Age-dependent-tree-ring growth responses of Pinus sylvestris var. mongolica to climate in Hulunbuir sandy land

SONG Laiping, LIU Bofei, WANG Yuhua, GAO Jingze

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2) : 159-164.

PDF(2207 KB)
PDF(2207 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2) : 159-164. DOI: 10.3969/j.issn.1000-2006.201806001

Age-dependent-tree-ring growth responses of Pinus sylvestris var. mongolica to climate in Hulunbuir sandy land

Author information +
History +

Abstract

【Objective】Because Scotch pine (Pinus sylvestris) plays an important ecological role in windbreak, sand fixation and farmland protection and so on in the north of China,we discussed the characteristics of the chronology of its tree rings in different age-classes and the relationship between its radial growth and climate factors and analyzed the differences in its responses to climate, to provide a theoretical basis for the dendroclimatology and forest management of Pinus sylvestris var. mongolica under different age-classes. 【Method】The COFECHA and ARSTAN programs were used to establish a standard chronology.Pinus sylvestris var. mongolica of 67 sample cores were obtained from two plots in Hulunbuir sandy land, China, and divided into three age-classes:young age trees-less than 55 years, 13 cores; middle age trees-more than 55 years and less than 100 years (A55-100),36 cores;old age trees-more than 100 years (A100), 18 cores. The standard chronology and climate factor responses were obtained using DendroClim 2002 analysis. 【Result】 Based on the statistical characteristic values of tree-ring-width chronologies under different age-classes, the results indicated that the mean sensitivity of the three age-classes was similar, responding to higher climate signals. The first-order autocorrelation (AC1) gradually increased in the different age-classes. Signal-to-noise ratio (SNR) and expressed population signal (EPS) were the highest in middle-aged trees, whereas the lowest values were found in old-aged trees. Our results showed that the sensitivity of radial growth in young-aged trees to temperature was the highest, whereas the old-aged trees were the most sensitive to precipitation. The middle-aged trees were more affected by the precipitation and minimum temperature in June and July of the preceding year; however, radial growth of the middle-aged trees in the area was significantly negatively correlated with the mean temperature in June and the precipitation in December. 【Conclusion】 The radial growth ofPinus sylvestris var. mongolica in different age-classes in Hulunbuir sandy land was affected by the climatic response. The growth of trees in old age was most sensitive to the precipitation in December of the previous year, reaching the highest value of response coefficient. The growth of both the young- and middle-aged trees exhibited a negative response to the temperatures in June. Thus, further research is needed to determine whether the climatic factors are related to global warming and the resulting warm and dry climate in Daxing’ an Mountins,China.

Key words

Pinus sylvestris var. mongolica / tree-ring / tree age groups / climate response / Hulunbuir sandy land

Cite this article

Download Citations
SONG Laiping , LIU Bofei , WANG Yuhua , et al. Age-dependent-tree-ring growth responses of Pinus sylvestris var. mongolica to climate in Hulunbuir sandy land[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(2): 159-164 https://doi.org/10.3969/j.issn.1000-2006.201806001

References

[1]
CARRER M. Individualistic and time-varying tree-ring growth to climate sensitivity[J]. PLoS One, 2011, 6(7):e22813.DOI: 10.1371/journal.pone.0022813.
[2]
FRITTS H C. Tree rring and climate [M]. London: Academic Press, 1976.
[3]
HANS W, KARIN L. Age-dependent climate sensitivity of Pinus sylvestris L.in the central Scandinavian Mountains[J]. Boreal Environment Research, 2004(9):37-317.
[4]
王晓明, 赵秀海, 高露双, 等. 长白山北坡不同年龄红松年表及其对气候的响应[J]. 生态学报, 2011,31(21):6378-6387.
WANG X M, ZHAO X H, GAO L S, et al. Age-dependent growth responses of Pinus koraiensis to climate in the north slope of Changbai Mountain,North-Eastern China [J]. Acta Ecol Sin, 2011,31(21):6378-6387.
[5]
闫伯前, 林万众, 刘琪璟, 等. 秦岭不同年龄太白红杉径向生长对气候因子的响应[J]. 北京林业大学学报, 2017,39(9):58-65.
YAN B Q, LIN W Z, LIU Q J, et al. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains,Northwestern China [J]. J Beijing For Univ, 2017,39(9):58-65.DOI: 10.13332/j.1000-1522.20170161.5
[6]
尚建勋, 时忠杰, 高吉喜, 等. 呼伦贝尔沙地樟子松年轮生长对气候变化的响应[J]. 生态学报, 2012,32(4):73-80.
SHANG J X, SHI Z J, GAO J X, et al. Response of tree-ring width of Pinus sylvestris var.mongolica to climate change in Hulunbuir sand land,China [J]. Acta Ecol Sin, 2012,32(4):73-80.
[7]
宋来萍, 刘礴霏, 张红蕾, 等. 呼伦贝尔沙地樟子松树轮对气候变化的响应1)[J]. 东北林业大学学报, 2015,43(5):17-22,74.
SONG L P, LIU B F, ZHANG H L, et al. Response of Pinus sylvestris var.mongolica tree-ring width to climate change in Hulunbuir sandy land,China [J]. J Northeast For Univ, 2015,43(5):17-22,74.DOI: 10.3969/j.issn.1000-5382.2015.05.004.
[8]
LIU Y, BAO G, SONG H M, et al. Precipitation reconstruction from Hailar pine (Pinus sylvestris var.mongolica) tree rings in the Hailar region,Inner Mongolia,China back to 1865 AD[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 282(1/2/3/4):81-87.DOI: 10.1016/j.palaeo.2009.08.012.
[9]
闫仁德, 王玉华, 姚洪林, 等. 呼伦贝尔沙地 [M]. 呼和浩特: 内蒙古大学出版社, 2010.
[10]
董建林, 雅洁. 呼伦贝尔沙地近十年来土地沙漠化变化分析[J], 林业资源管理, 2002 (4) :39-43.
DONG J L, YA J. Analysis on the changes of land desertification in Hulunbeier sandy land area over the last 10 years[J]. Forest Resources Management, 2002(4):39-43. DOI: 10.13466/j.cnki.lyzygl.2002.04.006.
[11]
潘磊磊, KWON S, 刘艳书, 等. 沙地樟子松天然林南缘分布区林木竞争、空间格局及其更新特征[J]. 生态学报, 2019,39(10):3687-3699.
PAN L L, KWON S, LIU Y S, et al. Treecompetition, spatial pattern,and regeneration of a Mongolian pine natural forest in the southern geographical edge[J]. Acta Ecologica Sinica, 2019,39(10):3687-3699.DOI: 10.5846/stxb201804270955.
[12]
吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990.
[13]
GRISSINO-MAYER H D. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA[J]. Tree-Ring Research, 2001, 57:205-221.
[14]
COOKER E R, HOLMES R L. Users manual for program ARSTAN[D]. Tucson :Laboratory of Tree-Ring Research, University of Arizona, 1986.
[15]
BIONDI F, WAIKUL K. DENDROCLIM 2002:a C++ program for statistical calibration of climate signals in tree-ring chronologies[J]. Comput Geosci, 2004, 30(3):303-311.DOI: 10.1016/j.cageo.2003.11.004.
[16]
SCHWEINGRUBER F H. Tree ring and environment dendroecology[C]. Berne Haupt:Swiss Federal Institute for Forest Snow and Landscape Research, 1996:26-33.
[17]
张芬, 勾晓华, 苏军德, 等. 祁连山东部不同树龄油松径向生长对气候的响应.冰川冻土[J]. 2011,33(3):634-639.
ZHANG F, GOU X H, SU J D, et al. Age-dependent responses of tree radial growth of Pinus tabulaeformis to climate in eastern section of the Qilian Mountains [J]. Journal of glacollogy and Geocryology, 2011,3(33):634-639.
[18]
WANG X C, ZHANG M H, JI Y, et al. Temperature signals in tree-ring width and divergent gro wth of Korean pine response to recent climate warming in northeast Asia[J]. Trees, 2017, 31(2):415-427.DOI: 10.1007/s00468-015-1341-x.
[19]
CAMARERO J J, SÁNCHEZ-SALGUERO R, SANGÜESA-BARREDA G, et al. Tree species from contrasting hydrological niches show divergent growth and water-use efficiency[J]. Dendrochronologia, 2018, 52:87-95.DOI: 10.1016/j.dendro.2018.10.003.
[20]
彭剑峰, 刘玉振, 王婷, 等. 神农山白皮松不同龄组年轮-气候关系及PDSI重建[J]. 生态学报, 2014,34(13) : 3509-3518.
PENG J F, LIU Y Z, WANG T. A tree-ring record of 1920’s-1940’s droughts and mechanism analyses in Henan Province[J]. Acta Ecologica Sinica, 2014,34(13):3509-3518. DOI: 10.5846/stxb201306121687.
[21]
ZHU L J, LI Z S, ZHANG Y D, et al. A 211-year growing season temperature reconstruction using tree-ring width in Zhangguangcai Mountains,northeast China:linkages to the Pacific and Atlantic Oceans[J]. Int J Climatol, 2017, 37(7):3145-3153.DOI: 10.1002/joc.4906.
[22]
CAI Q F, LIU Y. Climatic response of three tree species growing at different elevations in the Lüliang Mountains of northern China[J]. Dendrochronologia, 2013, 31(4):311-317.DOI: 10.1016/j.dendro.2012.07.003.
[23]
陆小明. 樟子松树轮宽度年表及其干湿指示意义研究:以大兴安岭新林地区为例[D]. 南京: 南京师范大学, 2007.
[24]
王晓春, 宋来萍, 张远东. 大兴安岭北部樟子松树木生长与气候因子的关系[J]. 植物生态学报, 2011,35(3):294-302.
Abstract
在大兴安岭北部漠河(MH I、MH II 2个样点)、塔河蒙克山(MKS)、满归(MG)地区共采集樟子松(Pinus sylvestris var. mongolica)年轮样芯139个, 成功地建立了MH I、MH II、MKS和MG 4个样点的樟子松差值年表, 最长达377年(1631–2007年, 有效年表为1743–2007年)。樟子松年轮指数与气候因子的响应函数分析表明, 气温是这4个样点樟子松径向生长的主要限制因子。但4个样点限制其生长的月份有所差异, 漠河的2个样点樟子松年轮指数与6月气温负相关, 满归和塔河蒙克山樟子松年轮指数与前一年10月气温正相关。樟子松年表与区域气候的冗余分析(redundancy analysis, RDA)基本与响应函数分析的结果一致, 进一步验证了气温对大兴安岭北部樟子松生长的限制作用。该研究为全球变暖下大兴安岭北部樟子松林的经营管理及区域气候重建提供了基础数据。
WANG X C, SONG L P, ZHANG Y D. Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’an Mountains, China [J]. Chinese Journal Plant Ecology, 2011,35(3):294-302. DOI: 10.3724/SP.J.1258.2011.00294.
[25]
张先亮, 何兴元, 陈振举, 等. 大兴安岭山地樟子松径向生长对气候变暖的响应:以满归地区为例[J]. 应用生态学报, 2011,22(12):3101-3108.
ZHANG X L, HE X Y, CHEN Z J, et al. Responses of Pinus sylvestris var.mongolica radial growth to climate warming in Great Xing’an Mountins:a case study in Mangui [J]. Chin J Appl Ecol, 2011,22(12):3101-3108.
[26]
JIAO L, JIANG Y, WANG M C, et al. Age-effect radial growth responses of Picea schrenkiana to climate change in the eastern Tianshan Mountains,northwest China[J]. Forests, 2017, 8(9):294.DOI: 10.3390/f8090294.
[27]
HOGG E H, MICHAELIAN M, HOOK T I, et al. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada[J]. Glob Change Biol, 2017, 23(12):5297-5308.DOI: 10.1111/gcb.13795.
[28]
WALKER X, JOHNSTONE J F. Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest[J]. Environ Res Lett, 2014, 9(6):064016.DOI: 10.1088/1748-9326/9/6/064016.
[29]
ZHU L J, COOPER D J, YANG J W, et al. Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var.microsperma) at two elevation gradient sites of northeast China[J]. Dendrochronologia, 2018, 50:52-63.DOI: 10.1016/j.dendro.2018.05.002.
[30]
SANCHEZ-SALGUERO R, CAMARERO J J, GUTIERREZ E, et al. Climate warming altersage-dependent growth sensitivity to temperature in Eurasian alpine tree lines[J]. Forest, 2018(9):688.
[31]
王守乐, 王晓雨, 盖学瑞, 等. 长白山落叶松与鱼鳞云杉生长-气候关系的种间差异[J]. 应用生态学报, 2019,30(5):1529-1535.
WANG S L, WANG X Y, GAI X R, et al. Interspecific difference of relationship between radial growth and climate factor for Larix olgensis and Picea jezoensis var.komarovii in Changbai Mountain,northeast China [J]. Chin J Appl Ecol, 2019,30(5):1529-1535.DOI: 10.13287/j.1001-9332.201905.028.
[32]
王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展[J]. 植物生态学报, 2003,27(1):23-33.
Abstract
树木的生长和立地环境密切相关并受多种气候因子的影响。树木年轮宽度的增加与温度、降水、太阳辐射、CO2浓度等气候因子有着复杂的相关关系。在干旱或半干旱地区,温度是限制树木生长的重要气候因子。生长季开始时最低温度的升高有利于延长生长季,与年轮宽度正相关;但是当生长季温度过高时,即使降水非常充裕,当年也只能形成窄年轮。生长季的温度过高则会加快土壤蒸发失水量并提高蒸汽压差,使土壤水分不足而不利于树木生长,因而生长季的高温多表现为与年轮宽度的负相关。生长期内降水量与树木的径向生长也成正相关,但当生长季的降水量充足或过多时,降水对树木径向生长不相关或负相关。受温度和降水共同调控的土壤湿度是树木径向生长的主要限制因子,良好的水分状况对树木生长起决定性作用。某一地区的太阳辐射能量高常会导致高温少雨,故高强度的太阳辐射使表土的湿度降低而不利于树木的径向生长。而在受季风影响的地区,树木年轮宽度的增加与当年雨季的气候变化关系不大。当年季风到来之前的气候(温度和降水)是树木生长的主要限制因子。有关CO2浓度的升高对树木生长的影响,研究的结果很不一致。一些温室实验及田间控制实验证明,CO2浓度的升高能对短命的一年生草本植物和植物幼苗产生“施肥效应”,并有利于其生长;还有些研究证明CO2浓度的升高能使高海拔地带的树木年轮宽度增加;但也有些研究认为CO2浓度的升高对生长在自然条件下的自然植被影响不大。近年来,有关树木径向生长和气候变化的研究越来越引起人们的关注,相关研究也取得了较大的进展。这些研究在帮助人们了解和研究古气候变化对森林植被的影响,以及预测未来全球变化对陆地生态系统的影响等方面有重要的理论和现实意义。综述了气候变化对树木年轮宽度影响的研究进展和应用,并概述了研究方法和发展前景,希望能加快和拓宽这一领域的发展。
WANG T, YU D, LI J F, et al. Advances in research on the relationship between climatic change and tree-ring width[J]. Acta Phytoecol Sin, 2003,27(1):23-33.

RIGHTS & PERMISSIONS

Copyright reserved © 2020
PDF(2207 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/