JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (5): 231-238.doi: 10.3969/j.issn.1000-2006.201806011
Previous Articles Next Articles
ZHANG Yiwen1(), GUO Aodong2, WU Hailong1, YUAN Hongwu1, DONG Yunchun1
Received:
2018-06-30
Revised:
2020-05-14
Online:
2020-10-30
Published:
2020-10-30
CLC Number:
ZHANG Yiwen, GUO Aodong, WU Hailong, YUAN Hongwu, DONG Yunchun. Seasonal prediction of PM2.5 based on the PCA-BP neural network[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 231-238.
Table 1
Principal components and their contributions"
季节 season | 序号 number | 特征值 characteristic value | 贡献率 contribution | 累计贡献率 accumulative contribution | 季节 season | 序号 number | 特征值 characteristic value | 贡献率 contribution | 累计贡献率 accumulative contribution |
---|---|---|---|---|---|---|---|---|---|
春季 spring | 1 | 2.381 9 | 0.216 5 | 0.216 5 | 夏季 summer | 1 | 2.464 2 | 0.220 9 | 0.220 9 |
2 | 2.217 8 | 0.201 6 | 0.418 2 | 2 | 1.897 2 | 0.170 1 | 0.391 0 | ||
3 | 1.549 6 | 0.140 9 | 0.559 0 | 3 | 1.466 8 | 0.131 5 | 0.522 5 | ||
4 | 1.284 6 | 0.116 8 | 0.675 8 | 4 | 1.110 4 | 0.099 5 | 0.622 0 | ||
5 | 1.014 2 | 0.092 2 | 0.768 0 | 5 | 1.044 2 | 0.093 6 | 0.715 7 | ||
6 | 0.961 6 | 0.087 4 | 0.855 4 | 6 | 0.865 7 | 0.077 6 | 0.793 3 | ||
7 | 0.591 9 | 0.053 8 | 0.909 2 | 7 | 0.722 7 | 0.064 8 | 0.858 1 | ||
8 | 0.392 8 | 0.035 7 | 0.944 9 | 8 | 0.608 5 | 0.054 5 | 0.912 6 | ||
9 | 0.323 3 | 0.029 4 | 0.974 3 | 9 | 0.422 7 | 0.037 9 | 0.950 5 | ||
10 | 0.182 3 | 0.016 6 | 0.990 9 | 10 | 0.347 4 | 0.031 1 | 0.981 7 | ||
11 | 0.100 0 | 0.009 1 | 1.000 0 | 11 | 0.204 7 | 0.018 3 | 1.000 0 | ||
秋季 autumn | 1 | 2.778 2 | 0.249 2 | 0.249 2 | 冬季 winter | 1 | 2.772 8 | 0.253 4 | 0.253 4 |
2 | 1.892 3 | 0.169 7 | 0.418 9 | 2 | 1.740 3 | 0.159 0 | 0.412 4 | ||
3 | 1.241 1 | 0.111 3 | 0.530 2 | 3 | 1.477 0 | 0.135 0 | 0.547 4 | ||
4 | 1.138 4 | 0.102 1 | 0.632 3 | 4 | 1.218 1 | 0.111 3 | 0.658 7 | ||
5 | 1.054 7 | 0.094 6 | 0.726 9 | 5 | 1.010 7 | 0.092 4 | 0.751 0 | ||
6 | 0.936 6 | 0.084 0 | 0.810 9 | 6 | 0.903 4 | 0.082 6 | 0.833 6 | ||
7 | 0.870 9 | 0.078 1 | 0.889 1 | 7 | 0.633 0 | 0.057 8 | 0.891 4 | ||
8 | 0.515 1 | 0.046 2 | 0.935 3 | 8 | 0.533 7 | 0.048 8 | 0.940 2 | ||
9 | 0.311 3 | 0.027 9 | 0.963 2 | 9 | 0.305 3 | 0.027 9 | 0.968 1 | ||
10 | 0.234 7 | 0.021 1 | 0.984 2 | 10 | 0.201 2 | 0.018 4 | 0.986 5 | ||
11 | 0.175 8 | 0.015 8 | 1.000 0 | 11 | 0.147 8 | 0.253 4 | 1.000 0 |
Table 2
Principal component matrix"
季节 season | 指标 metrics | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | ||
---|---|---|---|---|---|---|---|---|---|---|
春季 spring | PM10 | -0.108 9 | 0.172 8 | -0.331 2 | 0.684 1 | -0.051 1 | -0.134 2 | |||
SO2 | 0.101 3 | 0.504 4 | -0.054 9 | -0.567 5 | -0.033 6 | -0.007 1 | ||||
NO2 | 0.168 9 | 0.270 5 | 0.472 9 | 0.108 0 | 0.421 5 | 0.019 0 | ||||
CO | -0.067 9 | -0.585 0 | -0.248 5 | -0.225 5 | 0.358 9 | 0.186 1 | ||||
O3 | -0.116 1 | 0.137 4 | -0.634 3 | -0.257 4 | 0.073 6 | 0.123 7 | ||||
平均气压 | 0.620 1 | -0.185 7 | -0.297 7 | 0.145 7 | -0.066 1 | -0.130 8 | ||||
平均气温 | 0.677 2 | -0.167 1 | 0.106 0 | -0.087 5 | -0.193 9 | 0.086 2 | ||||
平均相对湿度 | 0.274 6 | 0.467 5 | -0.301 1 | 0.113 9 | 0.165 0 | 0.191 1 | ||||
降水量 | 0.000 2 | -0.001 0 | -0.032 8 | -0.131 8 | 0.111 0 | -0.585 8 | ||||
平均风速 | 0.099 5 | -0.006 4 | -0.007 3 | 0.113 3 | 0.733 2 | 0.177 9 | ||||
最大风速风向 | 0.053 2 | -0.021 0 | -0.088 7 | -0.095 2 | 0.255 4 | -0.704 1 | ||||
夏季 summer | PM10 | 0.695 3 | -0.042 8 | -0.160 2 | 0.267 8 | -0.096 4 | 0.120 1 | 0.074 5 | ||
SO2 | -0.202 4 | 0.132 3 | 0.523 4 | -0.327 7 | -0.509 9 | -0.187 2 | -0.018 7 | |||
NO2 | 0.040 4 | 0.606 2 | -0.268 0 | -0.369 4 | 0.037 3 | -0.079 8 | -0.146 4 | |||
CO | -0.601 7 | -0.180 0 | -0.498 2 | 0.046 5 | 0.168 7 | 0.063 7 | 0.071 5 | |||
O3 | -0.063 8 | -0.627 5 | 0.018 7 | -0.049 4 | -0.236 9 | -0.045 4 | -0.390 7 | |||
平均气压 | -0.117 4 | 0.154 9 | 0.045 3 | 0.606 3 | -0.361 8 | 0.066 6 | -0.317 0 | |||
平均气温 | -0.293 4 | 0.344 0 | 0.273 9 | 0.496 9 | 0.138 9 | 0.136 1 | 0.056 1 | |||
平均相对湿度 | 0.033 2 | 0.015 3 | -0.077 5 | 0.191 6 | 0.148 9 | -0.781 8 | -0.223 5 | |||
降水量 | -0.054 9 | -0.040 8 | 0.036 2 | -0.094 3 | -0.138 7 | 0.456 3 | 0.090 8 | |||
平均风速 | -0.016 0 | 0.199 3 | -0.506 7 | -0.040 8 | -0.509 2 | 0.093 0 | -0.299 4 | |||
最大风速风向 | -0.059 6 | -0.055 0 | -0.197 1 | 0.134 2 | -0.440 4 | -0.294 8 | 0.750 6 | |||
季节 season | 指标 metrics | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | ||
秋季 autumn | PM10 | 0.330 4 | -0.388 5 | -0.563 5 | 0.105 9 | 0.166 7 | -0.224 3 | 0.007 6 | ||
SO2 | 0.408 7 | 0.306 1 | 0.501 5 | -0.229 5 | 0.062 5 | -0.177 9 | -0.152 3 | |||
NO2 | 0.187 1 | 0.514 9 | -0.151 0 | 0.294 2 | -0.288 9 | 0.506 8 | 0.046 7 | |||
CO | -0.558 9 | -0.006 4 | 0.266 6 | 0.490 3 | 0.242 7 | -0.149 5 | -0.165 4 | |||
O3 | 0.225 8 | -0.364 2 | 0.521 1 | 0.260 0 | -0.041 3 | 0.007 1 | 0.023 4 | |||
平均气压 | 0.012 8 | 0.041 0 | 0.069 7 | 0.070 6 | 0.565 9 | 0.166 7 | 0.730 7 | |||
平均气温 | -0.017 0 | 0.545 2 | -0.118 9 | -0.156 1 | 0.363 8 | -0.404 5 | 0.006 8 | |||
平均相对湿度 | 0.562 1 | -0.045 1 | 0.083 2 | 0.291 1 | 0.266 4 | 0.017 9 | -0.134 4 | |||
降水量 | -0.008 0 | -0.043 4 | 0.120 9 | -0.011 8 | -0.253 0 | 0.141 3 | 0.469 1 | |||
平均风速 | 0.071 1 | 0.228 6 | -0.151 0 | 0.646 7 | -0.068 5 | -0.174 8 | -0.031 1 | |||
最大风速风向 | 0.061 4 | 0.049 8 | 0.046 3 | 0.095 5 | -0.481 7 | -0.629 7 | 0.416 7 | |||
冬季 winter | PM10 | -0.433 3 | 0.462 5 | -0.432 8 | 0.006 3 | -0.309 9 | 0.019 3 | -0.070 1 | ||
SO2 | -0.233 6 | -0.428 0 | 0.426 3 | 0.163 5 | 0.068 2 | 0.263 7 | -0.287 8 | |||
NO2 | -0.291 4 | -0.033 2 | 0.413 2 | -0.456 2 | 0.055 5 | -0.014 1 | 0.161 5 | |||
CO | 0.659 5 | -0.182 5 | 0.026 7 | -0.138 7 | -0.467 9 | -0.079 9 | -0.041 5 | |||
O3 | 0.001 0 | -0.079 3 | 0.083 1 | 0.392 0 | -0.485 8 | 0.149 7 | -0.088 8 | |||
平均气压 | -0.115 2 | -0.518 0 | -0.441 4 | -0.150 4 | -0.242 9 | -0.047 1 | 0.103 5 | |||
平均气温 | -0.084 8 | -0.479 0 | -0.463 2 | -0.088 9 | 0.343 2 | 0.080 7 | 0.014 1 | |||
平均相对湿度 | -0.439 8 | -0.226 1 | 0.118 4 | 0.225 0 | -0.382 1 | -0.097 6 | -0.017 7 | |||
降水量 | -0.044 0 | -0.025 1 | -0.011 8 | -0.125 2 | 0.056 0 | -0.631 3 | -0.747 2 | |||
平均风速 | -0.131 0 | -0.021 0 | 0.115 6 | -0.653 9 | -0.338 6 | -0.007 4 | 0.098 8 | |||
最大风速风向 | -0.069 2 | -0.110 5 | 0.125 1 | 0.260 5 | 0.027 9 | -0.695 9 | 0.545 3 |
[1] | 李令军, 王占山, 张大伟 , 等. 2013—2014年北京大气重污染特征研究[J]. 中国环境科学, 2016,36(1):27-35. |
LI L J, WANG Z S, ZHANG D W , et al. Analysis of heavy air pollution episodes in Beijing during 20132014[J]. China Environ Sci, 2016,36(1):27-35.DOI: 10.3969/j.issn.1000-6923.2016.01.005. | |
[2] |
MAKKONEN U, HELLÉN H, ANTTILA P , et al. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006[J]. Sci Total Environ, 2010,408(3):644-651. DOI: 10.1016/j.scitotenv.2009.10.050.
doi: 10.1016/j.scitotenv.2009.10.050 pmid: 19903567 |
[3] | 杨孝文, 周颖, 程水源 , 等. 北京冬季一次重污染过程的污染特征及成因分析[J]. 中国环境科学, 2016,36(3):679-686. |
YANG X W, ZHOU Y, CHENG S Y , et al. Characteristics and formation mechanism of a heavy winter air pollution event in Beijing[J]. China Environ Sci, 2016,36(3):679-686.DOI: 10.3969/j.issn.1000-6923.2016.03.007. | |
[4] | 张晓茹, 孔少飞, 银燕 , 等. 亚青会期间南京大气PM2.5中重金属来源及风险[J]. 中国环境科学, 2016,36(1):1-11. |
ZHANG X R, KONG S F, YIN Y , et al. Sources and risk assessment of heavy metals in ambient PM2.5 during Youth Asian Game period in Nanjing[J]. China Environ Sci, 2016,36(1):1-11.DOI: 10.3969/j.issn.1000-6923.2016.01.001. | |
[5] | 刘小生, 李胜, 赵相博 . 基于基因表达式编程的PM2.5浓度预测模型研究[J]. 江西理工大学学报, 2013,34(5):1-5. |
LIU X S, LI S, ZHAO X B . A study on the prediction model of PM2.5 concentration based on gene expression programming[J]. J Jiangxi Univ Sci Technol, 2013,34(5):1-5.DOI: 10.13265/j.cnki.jxlgdxxb.2013.05.019. | |
[6] | DUNEAD, POHOATA A, IORDACHE S . Using wavelet-feedforward neural networks to improve air pollution forecasting in urban environments[J]. Environ Monit Assess, 2015,187(7):1-16. DOI: 10.1007/s10661-015-4697-x. |
[7] | 彭斯俊, 沈加超, 朱雪 . 基于ARIMA模型的PM2.5预测[J]. 安全与环境工程, 2014,21(6):125-128. |
PENG S J, SHEN J C, ZHU X . Forecast of PM2.5 based on the ARIMA model[J]. Saf Environ Eng, 2014,21(6):125-128.DOI: 10.13578/j.cnki.issn.1671-1556.2014.06.023. | |
[8] | 贺祥, 林振山 . 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学, 2017,38(1):22-32. |
HE X, LIN Z S . Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model[J]. Environ Sci, 2017,38(1):22-32.DOI: 10.13227/j.hjkx.201606061. | |
[9] | 刘杰, 杨鹏, 吕文生 , 等. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015,45(6):76-83. |
LIU J, YANG P, LV W S , et al. Prediction models of PM2.5 mass concentration based on meteorological factors[J]. J Shandong Univ (Eng Sci), 2015,45(6):76-83.DOI: 10.6040/j.issn.1672-3961.0.2014.214. | |
[10] | COBOURN W G . An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations[J]. Atmos Environ, 2010,44(25):3015-3023.DOI: 10.1016/j.atmosenv.2010.05.009. |
[11] | 沈剑波, 雷相东, 李玉堂 , 等. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018,42(2):147-154. |
SHEN J B, LEI X D, LI Y T , et al. Prediction mean height for Larix olgensis plantation based on Bayesian-regularization BP neural network[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(2):147-154.DOI: 10.3969/j.issn.1000-2006.201706012. | |
[12] | 王嫣然, 张学霞, 赵静瑶 , 等. 北京地区不同季节PM2.5和PM10浓度对地面气象因素的响应[J]. 中国环境监测, 2017,33(2):34-41. |
WANG Y R, ZHANG X X, ZHAO J Y , et al. Study on the response of PM2.5 and PM10 concentrations to the ground meteorological conditions in different seasons in Beijing[J]. Environ Monit China, 2017,33(2):34-41. DOI: 10.19316/j.issn.1002-6002.2017.02.06. | |
[13] | 姚达文, 刘永红, 丁卉 , 等. 气象参数对基于BP神经网络的PM2.5日均值预报模型的影响[J]. 安全与环境学报, 2015,15(6):324-328. |
YAO D W, LIU Y H, DING H , et al. Effect of meteorological parameters on the PM2.5 daily concentration forecasting model based on the BP neural network[J]. J Saf Environ, 2015,15(6):324-328.DOI: 10.13637/j.issn.1009-6094.2015.06.067. | |
[14] | 杨笑笑, 汤莉莉, 张运江 , 等. 南京夏季市区VOCs特征及O3生成潜势的相关性分析[J]. 环境科学, 2016,37(2):443-451. |
YANG X X, TANG L L, ZHANG Y J , et al. Correlation analysis between characteristics of VOCs and ozone formation potential in summer in Nanjing urban district[J]. Environ Sci, 2016,37(2):443-451.DOI: 10.13227/j.hjkx.2016.02.006. | |
[15] | 陈刚, 刘佳媛, 皇甫延琦 , 等. 合肥城区PM10及PM2.5季节污染特征及来源解析[J]. 中国环境科学, 2016,36(7):1938-1946. |
CHEN G, LIU J Y, HUANGPU Y Q , et al. Seasonal variations and source apportionment of ambient PM10 and PM2.5 at urban area of Hefei,China[J]. China Environ Sci, 2016,36(7):1938-1946.DOI: 10.3969/j.issn.1000-6923.2016.07.003 | |
[16] | ZHOU F N, PARK J H, LIU Y J . Differential feature based hierarchical PCA fault detection method for dynamic fault[J]. Neurocomputing, 2016,202:27-35.DOI: 10.1016/j.neucom.2016.03.007. |
[17] | REN T, LIU S, MU H P , et al. Temperature prediction of the molten salt collector tube using BP neural network[J]. IET Renew Power Gener, 2016,10(2):212-220.DOI: 10.1049/iet-rpg.2015.0065. |
[18] | 肖小兵, 刘宏立, 马子骥 . 基于奇异谱分析的经验模态分解去噪方法[J]. 计算机工程与科学, 2017,39(5):919-924. |
XIAO X B, LIU H L, MA Z J . An empirical mode decomposition de-noising method based on singular spectrum analysis[J]. Comput Eng Sci, 2017,39(5):919-924.DOI: 10.3969/j.issn.1007-130X.2017.05.015. | |
[19] |
XIEX, LAM K M . Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image[J]. IEEE Trans Image Process, 2006,15(9):2481-2492. DOI: 10.1109/TIP.2006.877435.
doi: 10.1109/tip.2006.877435 pmid: 16948295 |
[20] | 关蓓蓓, 郑思俊, 崔心红 . 城市人工林空气负离子变化特征及其主要影响因子[J]. 南京林业大学学报(自然科学版), 2016,40(1):73-79. |
GUAN B B, ZHENG S J, CUI X H . The variation and main influencing factors of negative air ions in urban plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(1):73-79.DOI: 10.3969/j.issn.1000-2006.2016.01.012. | |
[21] | 污染物数据采集[EB /OL].http://www.pm25.in/.2013-08-06/2018-2-20. |
[22] | 气数据采集[EB /OL].http://www.weather.com.cn/.2008-05-16/2018-5-10. |
[1] | CHENG Caiyun, XUE Jianhui, MA Jie. Assessment of different Karst plantation types on soil quality based on a minimum data set [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 134-142. |
[2] | WANG Yue, MIAO Zheng, HAO Yuanshuo, LIU Xin, DONG Lihu. A single tree leaf area prediction model in the Larix olgensis and Fraxinus mandshurica mixed forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 235-245. |
[3] | LI Hui, ZHANG Wan, CHANG Yihao, YANG Xia, XIAO Xiangwei, ZHU Jingle. Construction and application of the leaf area prediction model for young Quercus variabilis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 246-254. |
[4] | ZHANG Zanpei, GU Yueying, SHANG Xulan, WANG Ji, FANG Shengzuo. An evaluation on the cold tolerance of twenty-three Cyclocarya paliurus families under natural low temperatures [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 85-92. |
[5] | ZHAO Lingxiao, LI Zhiyang, QU Leilei. Improved time series models based on EMD and CatBoost algorithms: taking PM2.5 prediction of Dalian City as an example [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 268-274. |
[6] | ZHAO Zhiqiang, XU Xiaolong, YUAN Qing, WU Yan. Landscape pattern evolution and driving factors of Songhua River wetland in Harbin [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 219-226. |
[7] | WANG Jue, LI Yanjie, CHEN Yicun, GAO Ming, ZHAO Yunxiao, WU Liwen, HUANG Shiqing, ZHANG Yongzhi, ZHU Kangshuo, WANG Yangdong. The application of near-infrared spectroscopy in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 237-246. |
[8] | CHEN Jiankun, MU Fengyun, ZHANG Yongchuan, TIAN Tian, WANG Junxiu. Comparative analysis of hourly PM2.5 prediction based on multiple machine learning models [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 152-160. |
[9] | XIN Shidong, JIANG Lichun, MU Lin. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 115-121. |
[10] | WANG Junjie, JIANG Lichun. Predicting crown width for Larix gmelinii based on linear quantiles groups [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 161-170. |
[11] | ZHANG Heng, CUI Mengran, SHAN Yanlong, WANG Fei. Study on flammability of herbaceous fuel in typical grassland of China-Mongolia border [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 171-177. |
[12] | PENG Zhiqi, DONG Peng, ZHU Hong, ZHU Shuxia, DONG Jingjing, ZHONG Yuqian, ZHAI Feifei, ZHENG Aichun, WANG Xianrong, YI Xiangui. Analyses of Cerasus serrulata population structure and point patterns in Yuntai Mountain, Jiangsu [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 167-176. |
[13] | CHEN Hongjian, HAO Dejun, TIAN Min, ZHOU Yang, XIA Xiaohong, ZHAO Xinyi, QIAO Heng, TAN Jiajin. The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 143-151. |
[14] | WANG Shumei, WANG Bo, FAN Shaohui, XIAO Xiao, XIA Wen, GUAN Fengying. Influence of strip cutting management on soil bacterial community structure and diversity in Phyllostachys edulis stands [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 60-68. |
[15] | JIANG Xingxiang, CHEN Yukai, WU Shisong, CHEN Qing. Population structure and dynamics of the endangered plant Chieniodendron hainanense in Hainan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 116-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||