JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (1): 138-144.doi: 10.3969/j.issn.1000-2006.201809004
Previous Articles Next Articles
LIU Jiazheng(), WANG Xuefeng*(), WANG Tian
Received:
2018-09-07
Revised:
2019-03-28
Online:
2020-02-08
Published:
2020-02-02
Contact:
WANG Xuefeng
E-mail:liujiazheng0919@163.com;xuefeng@ifrit.ac.cn
CLC Number:
LIU Jiazheng, WANG Xuefeng, WANG Tian. Automatic identification of tree species based on deep learning[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 138-144.
Table 1
Parameter settings and training results"
组合编号 combination No. | 全连接层 full connection layer | 卷积层 convolution layer | 正则项系数 regulatization coefficient | 初始化学习率 initial learning rate | 最小训练 损失率 min. training loss rate | 最大训练 准确率 max. training accuracy rate |
---|---|---|---|---|---|---|
A1 | 1 | 3 | 0 | 0.001 | 2.264 5 | 0.640 0 |
A2 | 4 | 0.001 | 0.010 | 1.756 6 | 0.765 1 | |
A3 | 5 | 0.100 | 0.100 | 0.499 6 | 0.751 8 | |
B1 | 2 | 3 | 0 | 0.001 | 3.169 3 | 0.778 8 |
B2 | 4 | 0.001 | 0.010 | 2.054 9 | 0.816 5 | |
B3 | 5 | 0.100 | 0.100 | 0.458 5 | 0.660 4 | |
C1 | 3 | 3 | 0 | 0.001 | 1.100 9 | 0.754 9 |
C2 | 4 | 0.001 | 0.010 | 0.100 4 | 0.967 8 | |
C3 | 5 | 0.100 | 0.100 | 0.923 8 | 0.815 1 |
Table 2
Confusion matrix of test set image recognition results"
树种 tree species | 兴安落叶松 L. gmelinii | 白桦 B. platyphylla | 山杨 Populus davidiana | 樟子松 Pinus sylvestris var. mongolica | 雪松 C. deodara | 柏树 Platycladus orientalis | 白皮松 Pinus bungeana |
---|---|---|---|---|---|---|---|
兴安落叶松L. gmelinii | 96 | 0 | 0 | 2 | 2 | 0 | 0 |
白桦B. platyphylla | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
山杨Populus davidiana | 0 | 0 | 93 | 3 | 0 | 4 | 0 |
樟子松Pinus sylvestris var. mongolica | 3 | 0 | 0 | 93 | 4 | 0 | 0 |
雪松C. deodara | 3 | 0 | 0 | 3 | 94 | 0 | 0 |
柏树Platycladus orientalis | 0 | 0 | 4 | 0 | 0 | 96 | 0 |
白皮松Pinus bungeana | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
[1] | 张颖, 潘静. 中国森林资源资产核算及负债表编制研究-基于森林资源清查数据[J]. 中国地质大学学报 (社会科学版), 2016, 16(6):46-53. |
ZHANG Y, PAN J. Research on asset accounting and statement formulation of forest resources in China based on forest resources inventory data[J]. Journal of China University of Geosciences(Social Science Edition), 2016, 16(6):46-53. DOI: 10.16493/j.cnki.42-1627/c.2016.06.005.
doi: 10.16493/j.cnki.42-1627/c.2016.06.005 |
|
[2] | 吴斌, 刘合翔. 人工智能技术在精准林业中的运用与发展[J]. 中国林业产业, 2006, 5:25-28. |
WU B, LIU H X. Application and development of artificial intelligence technology in precision forestry[J]. China Forestry Industry, 2006, 5:25-28. | |
[3] |
OTHMANI A A, JIANG C S, LOMENIE N, et al. A novel computer-aided tree species identification method based on burst wind segmentation of 3D bark textures[J]. Machine Vision and Applications, 2016, 27(5):751-766. DOI: 10.1007/s00138-015-0738-2.
doi: 10.1007/s00138-015-0738-2 |
[4] |
BERTRAND S, BEN A R, CERUTTI G, et al. Bark and leaf fusion systems to improve automatic tree species recognition[J]. Ecological Informatics, 2018, 46:57-73. DOI: 10.1016/j.ecoinf.2018.05.007.
doi: 10.1016/j.ecoinf.2018.05.007 |
[5] |
KUMAR N, BELHUMEUR P N, BISWAS A, et al. Leafsnap: a computer vision system for automatic plant species identification[C]//European Conference on Computer Vision. Berlin, Heidelberg:Springer, 2012: 502-516. DOI: 10.1007/978-3-642-33709-3_36.
doi: 10.1007/978-3-642-33709-3_36 |
[6] |
SEKEROGLU B, INAN Y. Leaves recognition system using a neural network[J]. Procedia Computer Science, 2016, 102:578-582.DOI: 10.1016/j.procs.2016.09.445.
doi: 10.1016/j.procs.2016.09.445 |
[7] | 穆易. 复杂背景下树干图像分割算法及其识别系统的研究[D]. 天津:天津理工大学, 2015. |
MU Y. Research on the segmentation algorithm and recognition system of trunk image in complex background[D]. Tianjin: Tianjin University of Technology, 2015. | |
[8] | 于海鹏, 刘一星, 刘镇波. 基于图像纹理特征的木材树种识别[J]. 林业科学, 2007, 43(4):77-81. |
YU H P, LIU Y X, LIU Z B. Wood species retrieval on base of image textural features[J]. Scientia Silvae Sinicae, 2007, 43(4):77-81.DOI: 10.3321/j.issn:1001-7488.2007.04.013.
doi: 10.3321/j.issn:1001-7488.2007.04.013 |
|
[9] | 梁勇. 基于GLCM木材树种识别方法的研究[D]. 南京:南京林业大学, 2010. |
LIANG Y. The research of essence recognition method based on gray level co-occurrence matrix of wood digital image[D]. Nanjing: Nanjing Forestry University, 2010. | |
[10] | 孟腊梅. 基于遗传规划的树皮纹理图像识别方法[D]. 保定:河北农业大学, 2011. |
MENG L M. Bark texture image recognition method based on genetic programming[D]. Baoding: Hebei Agricultural University, 2011. | |
[11] | 陈勇平, 郭文静, 王正. 基于颜色直方图的木材单板图像检索技术研究[J]. 南京林业大学学报(自然科学版), 2015, 39(5):129-134. |
CHEN Y P, GUO W J, WANG Z. Image retrieval techniques of wood veneers based on color histogram[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(5):129-134.DOI: 10.3969/j.issn.1000-2006.2015.05.021.
doi: 10.3969/j.issn.1000-2006.2015.05.021 |
|
[12] | 窦刚, 陈广胜, 赵鹏. 采用颜色纹理及光谱特征的木材树种分类识别[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(2):147-154. |
DOU G, CHEN G S, ZHAO P. Wood species recognition using color texture and spectral features[J]. Journal of Tianjin University(Natural Science and Technology Edition), 2015, 48(2):147-154.DOI: 10.11784/tdxbz201407025.
doi: 10.11784/tdxbz201407025 |
|
[13] | 高程程, 惠晓威. 基于灰度共生矩阵的纹理特征提取[J]. 计算机系统应用, 2010, 19(6):195-198. |
GAO C C, HUI X W. Texture feature extraction based on gray level co-occurrence matrix[J]. Computer System Applications, 2010, 19(6):195-198. DOI: 10.3969/j.issn.1003-3254.2010.06.047.
doi: 10.3969/j.issn.1003-3254.2010.06.047 |
|
[14] | 杨洋. 基于小波变换及SVM理论的树木种类识别研究[D]. 哈尔滨:东北林业大学, 2017. |
YANG Y. Reseaech of tree species identification based on the theory of wavelet transform and SVM[D]. Harbin: Northeast Forestry University, 2017. | |
[15] | 李可心, 戚大伟, 牟洪波, 等. 基于灰度共生矩阵与SOM神经网络的树皮纹理特征识别[J]. 森林工程, 2017, 33(3):24-27. |
LI K X, QI D W, MU H B, et al. Identification of tree bark texture characteristic based ongray co-occurrence matrix and SOM neural network[J]. Forest Engineering, 2017, 33(3):24-27.DOI: 10.3969/j.issn.1006-8023.2017.03.006.
doi: 10.3969/j.issn.1006-8023.2017.03.006 |
|
[16] | 赵鹏超, 戚大伟. 基于卷积神经网络和树叶纹理的树种识别研究[J]. 森林工程, 2018, 34(1):56-59. |
ZHAO P C, QI D W. Tree species recognition based on convolution neural network and leaf texture[J]. Forest Engineering, 2018, 34(1):56-59.DOI: 10.16270/j.cnki.slgc.2018.01.012.
doi: 10.16270/j.cnki.slgc.2018.01.012 |
|
[17] |
HINTON G E. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.DOI: 10.1126/science.1127647.
doi: 10.1126/science.1127647 |
[18] |
BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[J]. Science, 10.7551/mitpress/7503.003.0147.
doi: 10.7551/mitpress/7503.003.0147 |
[19] |
RANZATO M A, POULTNEY C, CHOPRA S, et al. Efficient learning of sparse representations with an energy-based model[C]// Proceedings of the 2007 Advances in Neural Information Processing Systems. Vancouver: The MIT Press, 2007 10.7551/mitpress/7503.003.0147.
doi: 10.7551/mitpress/7503.003.0147 |
[20] |
ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. Journal of Machine Learning Research, 2010, 11(3):625-660. DOI: 10.1145/1756006.1756025.
doi: 10.1145/1756006.1756025 |
[21] |
KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses:a new family of nature-based material[J]. Angewandte Chemie International Edition, 2011, 50(24):5438-5466.DOI: 10.1002/anie.201001273
doi: 10.1002/anie.201001273 |
[22] |
YOO H J. Deep convolution neural networks in computer vision: a review[J]. IEIE Transactions on Smart Processing and Computing, 2015, 4(1):35-43. DOI: 10.5573/ieiespc.2015.4.1.035.
doi: 10.5573/ieiespc.2015.4.1.035 |
[23] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. DOI: 10.1109/5.726791.
doi: 10.1109/5.726791 |
[24] | O’SHEA K, NASH R. An introduction to convolutional neural networks[EB/OL]. 2015: arXiv preprint arXiv:1511.08458, 2015. |
[25] | ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[C]// Proc of International Conference on Learning Representations. 2013:1301-1310. |
[26] |
PASSALIS N, TEFAS A. Learning bag-of-features pooling for deep convolutional neural networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5755-5763. DOI: 10.1109/ICCV.2017.614.
doi: 10.1109/ICCV.2017.614 |
[27] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. DOI: 10.1145/3065386.
doi: 10.1145/3065386 |
[28] | ABADI M, BARHAM P, CHEN J M, et al. Tensorflow:a system for large-scale machine learning[EB/OL]. 2016:arXiv: 1605.08695[cs.DC]. http://orxiv.org/abs/1605.08695. |
[1] | YIN Xianming, JI Yu, ZHANG Riqing, MO Dengkui, PENG Shaofeng, WEI Wei. Research on recognition of Camellia oleifera leaf varieties based on deep learning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 29-36. |
[2] | JI Yu, YIN Xianming, YAN Enping, JIANG Jiamin, PENG Shaofeng, MO Dengkui. Research on extraction of shape features of Camellia oleifera fruits based on camera photography [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 63-70. |
[3] | YANG Tingting,GUAN Fangli,XU Aijun. Multiple trees contour extraction method based on Graph Cut algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 91-98. |
[4] | ZHANG Dong, YUN Ting, XUE Lianfeng, RUAN Honghua. Skeleton extraction for point cloud trees based on force field [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(02): 160-166. |
[5] | SHEN Ming-xia1, HE Rui-yin1, CONG Jing-hua2. Methodological Study of Information Extraction of Forest Using ETM+ and Remote Sensing Image [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2007, 31(06): 113-116. |
[6] | ZHAO Mao-cheng1, ZHENG Jia-qiang1, LING Xiao-jing2. Improved Tree Crown Recognition System Based Artificial Neural Network [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2005, 29(04): 11-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||