JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (3): 149-156.doi: 10.3969/j.issn.1000-2006.201811012
Previous Articles Next Articles
PAN Lei1(), SUN Yujun1(), WANG Yifu1, CHEN Liping2, CAO Yuanshuai3
Received:
2018-11-05
Revised:
2019-01-24
Online:
2020-05-30
Published:
2020-06-11
Contact:
SUN Yujun
E-mail:1072344791@qq.com;panlb@bjfu.edu.cn
CLC Number:
PAN Lei, SUN Yujun, WANG Yifu, CHEN Liping, CAO Yuanshuai. Estimation of aboveground biomass in a Chinese fir (Cunninghamia lanceolata)forest combining data of Sentinel⁃1 and Sentinel⁃2[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 149-156.
Table 1
Field biomass distribution in general"
地上生物量水平/(Mg·hm-2) AGB class | 样地数number of plots | 地上生物量/(Mg·hm-2) aboveground biomass weight | 占比/% ratio |
---|---|---|---|
<100 | 8 | 23.73、 29.00、 33.00、 38.90、 52.91、 75.79、 86.35、 93.62 | 16 |
≥100~200 | 20 | 100.69、 105.00、 105.14 、 113.01、 122.99 、 124.63、 127.90 、 128.64、 135.18、 144.82、 146.47、 154.32、 159.18、 161.26、 177.21、 182.20、 182.44 、 185.66、 189.07、 199.66 | 40 |
≥200~300 | 18 | 200.63、 211.47、 219.30、 219.33、 219.74、 219.04、 226.75、 245.71、 248.61、 256.27、 256.43、 262.37、 274.59、 279.18、 284.16、 286.27、 295.10、 299.83 | 36 |
≥300 | 4 | 300.75、 310.67、 394.53、 401.22 | 8 |
Table 3
Vegetation index and calculation formula based on Sentinel?2 image"
植被指数 vegetable index | 计算公式 calculation formula |
---|---|
土壤调整植被指数 soil adjusted vegetation index(ISAV) | ISAV=1.5(ρnir–ρred)/(ρnir+ρred+0.5) |
归一化植被指数 normalized difference vegetation index(INDV) | INDV=(ρnir–ρred)/(ρnir+ρred) |
第二修正土壤调整植被指数 second modified soil adjusted vegetation index(IMSAV2) | IMSAV2=0.5[2(ρnir+1)-sqrt[(2ρnir+1)(2ρnir+1)-8(ρnir-ρred)]] |
差值植被指数 difference vegetation index(IDV) | IDV=ρnir–ρred |
比值植被指数 ratio vegetation index(IRV) | IRV=ρnir/ρred |
垂直植被指数 perpendicular vegetation index(IPV) | IPV=sin (a)ρnir-cos (a)ρred (a=45°) |
红外比率植被指数 infrared percentage vegetation index(IIPV) | IIPV=ρnir/(ρnir+ρred) |
加权差异植被指数 weighted difference vegetation index(IWDV) | IWDV=ρnir–0.5 ρred |
转换归一化植被指数 transformed normalized difference vegetation index (ITNDV) | ITNDV=sqrt[(ρnir-ρred)/(ρnir+ρred)+0.5] |
绿度归一化植被指数 green normalized difference vegetation index (IGNDV) | IGNDV=(ρnir–ρgreen)/(ρnir+ρgreen) |
颜色指数 colour index (IC) | IC=(ρred-ρgreen)/(ρred+ρgreen) |
大气修正植被指数atmospherically resistant vegetation index(IARV) | IARV=(ρnir-rb)/(ρnir+rb) rb=(ρred)-γ(ρblue-ρred), with γ=1 |
Table 4
Regression model to estimate AGB using band reflection"
遥感因子类型 remote sensing factors | 模型拟合参数 model fitting parameters | 截距和变量的拟合参数 fitting parameters for intercept and variables | |||||||
---|---|---|---|---|---|---|---|---|---|
R2 | R2adj | 均方根误差/ (Mg·hm-2) RMSE | P | 截距和变量 intercept & variables | 系数 coefficient | 系数标准误 SE. of coefficient | P | 方差膨胀因子 VIF | |
单波段 band | 0.347 | 0.319 | 74.81 | 4.5×10-5 | 截距 | 258.40 | 43.70 | 3.6×10-7*** | ― |
B2 | -1.69 | 0.36 | 2.3×10-5*** | 2.10 | |||||
B8 | 0.11 | 0.02 | 3.6×10-5*** | 2.10 | |||||
植被指数 VI | 0.346 | 0.303 | 75.69 | 0.000 2 | 截距 | 812.83 | 331.57 | 0.018 1* | ― |
IMSAV2 | -332.92 | 158.55 | 0.041 2* | 2.46 | |||||
IRV | 73.46 | 18.51 | 0.000 3*** | 8.76 | |||||
IARV | 1 348.28 | 558.82 | 0.019 8* | 5.85 | |||||
纹理 texture | 0.477 | 0.455 | 66.94 | 2.4×10-7 | 截距 | 159.13 | 32.92 | 1.5×10-5*** | — |
CB3 | 128.33 | 27.53 | 2.6×10-5*** | 1.00 | |||||
ETNDVI | -67.12 | 18.69 | 0.000 8*** | 1.00 | |||||
所有因子 all factors | 0.542 | 0.501 | 64.04 | 3.1×10-7 | 截距 | 238.47 | 52.40 | 4.0×10-5*** | — |
B2 | -0.87 | 0.356 | 0.02* | 2.84 | |||||
B12 | 0.19 | 0.08 | 0.02* | 2.99 | |||||
CB3 | 124.76 | 26.58 | 2.5×10-5*** | 1.10 | |||||
ETNDVI | -75.84 | 18.69 | 0.000 2*** | 1.14 |
Table 5
Regression model to estimate AGB combining on Sentinel?1 and Sentinel?2"
模型拟合参数 model fitting parameters | 截距和变量的拟合参数 fitting parameters for intercept and variables | |||||||
---|---|---|---|---|---|---|---|---|
R2 | R2adj | 均方根误差/ (Mg·hm-2) RMSE | P | 截距和变量 intercept & variables | 系数 coefficient | 系数标准误 SE. of coefficient | P | 方差膨胀因子 VIF |
0.629 | 0.575 | 59.13 | 6.9×10-8 | 截距 | 232.32 | 48.53 | 2.0×10-5*** | — |
B2 | -0.77 | 0.35 | 0.032 8* | 3.17 | ||||
B12 | 0.18 | 0.08 | 0.002 2* | 3.08 | ||||
CB3 | 108.81 | 25.11 | 8.7×10-5*** | 1.11 | ||||
ETNOVI | -83.01 | 17.43 | 2.2×10-5*** | 1.16 | ||||
CVH5 | -95.60 | 42.84 | 0.030 9* | 1.32 | ||||
DVH9 | 17.46 | 6.23 | 0.007 3** | 1.17 |
1 | HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Glob Chang Biol,2005,11(6):945-958.DOI:10.1111/j.1365-2486.2005.00955.x. |
2 | HOLLMANN R,MERCHANT C J,SAUNDERS R,et al. The ESA climate change initiative:satellite data records for essential climate variables[J]. Bull Amer Meteor Soc,2013,94(10):1541-1552. DOI:10.1175/bams-d-11-00254.1. |
3 | HEIMANN M,REICHSTEIN M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature,2008,451(7176):289-292. DOI:10.1038/nature06591. |
4 | 刘茜,杨乐,柳钦火,等. 森林地上生物量遥感反演方法综述[J]. 遥感学报,2015,19(1):62-74. |
LIU Q,YANG L,LIU Q H,et al.Review of forest above ground biomass inversion methods based on remote sensing technology[J]. J Remote Sens,2015,19(1):62-74. | |
5 | 陈玲,郝文乾,高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报,2015,37(3):1-12. |
CHEN L,HAO W Q,GAO D L. The latest applications of optical image texture in forestry[J]. J Beijing For Univ,2015,37(3):1-12.DOI:10.13332/j.1000-1522.20140304. | |
6 | 张佳华,符淙斌. 生物量估测模型中遥感信息与植被光合参数的关系研究[J]. 测绘学报,1999,28(2):128-132. |
ZHANG J H,FU C B. A study on relationships between remote sensing information and plant photosynthetic parameters in estimating biomass model[J]. Acta Geod Et Cartogr Sin,1999,28(2):128-132.DOI:10.3321/j.issn:1001-1595.1999.02.004. | |
7 | 李明诗,谭莹,潘洁,等. 结合光谱、纹理及地形特征的森林生物量建模研究[J]. 遥感信息,2006,21(6):6-9,66. |
LI M S,TAN Y,PAN J,et al. Modeling forest aboveground biomass by combining the spectrum,textures with topographic features[J]. Remote Sens Inf,2006,21(6):6-9,66. DOI:10.3969/j.issn.1000-3177.2006.06.003. | |
8 | 王长委,胡月明,沈德才,等. 基于CBERS数据的亚热带森林地上碳储量估算[J]. 林业科学,2014,50(1):88-96. |
WANG C W,HU Y M,SHEN D C,et al. Assessing the capability of CBERS⁃02B CCD for estimating subtropical forest above ground carbon storage[J]. Sci Silvae Sin,2014,50(1):88-96. DOI:10.11707/j.1001-7488.20140114. | |
9 | ZHANG L J,SHAO Z F,WANG Z G. Estimation of forest aboveground biomass using the integration of spectral and textural features from GF⁃1 satellite image[C]//2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA),July4-6,2016. |
10 | 向安民,刘凤伶,于宝义,等.基于k⁃NN方法和GF遥感影像的森林蓄积量估测[J]. 浙江农林大学学报,2017,34(3):406-412. |
XIANG A M,LIU F L,YU B Y,et al. Forest stock volume estimation based on the k⁃NN method and GF remote sensing data[J]. J Zhejiang A&F Univ,2017,34(3):406-412.DOI:10.11833/j.issn.2095-0756.2017.03.004. | |
11 | HYDE P,DUBAYAH R,WALKER W,et al. Mapping forest structure for wildlife habitat analysis using multi⁃sensor (LiDAR,SAR/InSAR,ETM+,Quickbird) synergy[J]. Remote Sens Environ,2006,102(1/2):63-73. DOI:10.1016/j.rse. 2006.01.021. |
12 | ECKERT S. Improved forest biomass and carbon estimations using texture measures from WorldView⁃2 satellite data[J]. Remote Sens,2012,4(4):810-829. DOI:10.3390/rs4040810. |
13 | 黄金龙,居为民,郑光,等. 基于高分辨率遥感影像的森林地上生物量估算[J]. 生态学报,2013,33(20):6497-6508. |
HUANG J L,JU W M,ZHENG G,et al. Estimation of forest aboveground biomass using high spatial resolution remote sensing imagery[J]. Acta Ecol Sin,2013,33(20):6497-6508.DOI:10.5846/stxb201212211841. | |
14 | 徐小军,周国模,杜华强,等. 基于Landsat TM数据估算雷竹林地上生物量[J]. 林业科学,2011,47(9):1-6. |
XU X J,ZHOU G M,DU H Q,et al. Estimation of aboveground biomass of Phyllostachyspraecox forest based on Landsat Thematic Mapper image[J]. Sci Silvae Sin,2011,47(9):1-6. | |
15 | LU D S,BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondônia,Brazilian Amazon[J]. Acta Amaz,2005,35(2):249-257. DOI:10.1590/s0044-59672005000200015. |
16 | YANG C J,HUANG H,WANG S Y. Estimation of tropical forest biomass using Landsat TM imagery and permanent plot data in Xishuangbanna,China[J]. Int J Remote Sens,2011,32(20):5741-5756. DOI:10.1080/01431161.2010.507677. |
17 | 郭云,李增元,陈尔学,等. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学,2015,51(1):140-149. |
GUO Y,LI Z Y,CHEN E X,et al. Estimating forest above⁃ground biomass in the upper reaches of Heihe River basin using multi⁃spectral remote sensing[J]. Sci Silvae Sin,2015,51(1):140-149. DOI:10.11707/j.1001-7488.20150117. | |
18 | 李明阳,吴军,余超,等. 福建武夷山自然保护区森林碳储量遥感估测方法与空间分析[J]. 南京林业大学学报(自然科学版),2014,38(6):6-10. |
LI M Y,WU J,YU C,et al. Estimation and spatial analysis of forest carbon stocks based on remote sensing technology in Wuyi Mountain National Reserve of Fujian Province[J]. J Nanjing For Univ (Nat Sci Ed),2014,38(6):6-10. DOI:10.3969/j.issn.1000-2006.2014.06.002. | |
19 | 王月婷,张晓丽,杨慧乔,等. 基于Landsat 8卫星光谱与纹理信息的森林蓄积量估算[J]. 浙江农林大学学报,2015,32(3):384-391. |
WANG Y T,ZHANG X L,YANG H Q,et al.Forest volume estimation based on spectral and textural information from the Landsat 8 satellite[J]. J Zhejiang A&F Univ,2015,32(3):384-391. DOI:10.11833/j.issn.2095-0756.2015.03.008. | |
20 | 孙玉军,王新杰,马炜,等. 林改区域典型树种森林碳储量监测技术研究[M]. 北京: 中国林业出版社, 2014:34-67. |
21 | HARALICK R M. Statistical and structural approaches to texture[J]. Proc IEEE,1979,67(5):786-804. DOI:10.1109/proc. 1979.11328. |
22 | LU D S,CHEN Q,WANG G X,et al. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates[J]. Int J For Res,2012,2012:ID436537:1-16. DOI:10.1155/2012/436537. |
23 | ZHAO P P,LU D S,WANG G X,et al. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation[J]. Remote Sens,2016,8(6):469. DOI:10.3390/rs8060469. |
24 | LU D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. Int J Remote Sens,2005,26(12):2509-2525. DOI:10.1080/01431160500142145. |
25 | STEININGER M K. Satellite estimation of tropical secondary forest above⁃ground biomass:data from Brazil and Bolivia[J]. Int J Remote Sens,2000,21(6/7):1139-1157. DOI:10.1080/014311600210119. |
26 | KUPLICH T M,CURRAN P J,ATKINSON P M. Relating SAR image texture to the biomass of regenerating tropical forests[J].Int J Remote Sens,2005,26(21):4829-4854. DOI:10.1080/01431160500239107. |
27 | SARKER L R,NICHOL J E. Improved forest biomass estimates using ALOS AVNIR⁃2 texture indices[J]. Remote Sens Environ,2011,115(4):968-977. DOI:10.1016/j.rse.2010.11.010. |
28 | FUCHS H,MAGDON P,KLEINN C,et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra:Combining satellite imagery and field inventory[J]. Remote Sens Environ,2009,113(3):518-531.DOI:10.1016/j.rse.2008.07.017. |
29 | CUTLER M E J,BOYD D S,FOODY G M,et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data:an assessment of predictions between regions[J]. ISPRS J Photogramm Remote Sens,2012,70:66-77. DOI:10.1016/j.isprsjprs.2012.03.011. |
[1] | HAN Sen, RUAN Renzong, FU Qiaoni, XU Hanwei, HENG Xuebiao. Extraction of aquatic vegetation in Hongze Lake National Wetland Park based on Sentinel-1 and Sentinel-2 images [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 19-26. |
[2] | ZHOU Youfeng, XIE Binglou, LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 169-178. |
[3] | DONG Yujie, MAO Lingfeng, ZHANG Min, LU Xudong, WU Xiuping. Relationship between aboveground biomass and environmental factors of subtropical typical evergreen broad-leaved forest in east China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 74-80. |
[4] | WANG Yanfang, TAN Lu, GUO Hongli, WU Fang, QI Fei, MENG Wenting, XU Yannan. Study on spatial and temporal variation of forest fractional vegetation cover in Liyang based on multi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 183-191. |
[5] | WANG Youdi, XU Kefu. Analyses of Huizhou landscape on distribution and texture of traditional villages [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 205-212. |
[6] | JU Yilin, JI Yongjie, HUANG Jimao, ZHANG Wangfei. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 58-68. |
[7] | ZHANG Guofei, YUE Cairong, LUO Hongbin, GU Lei, ZHU Bodong. Based polarization orientation angle compensation for Pinus kesiya var. langbianensis forest aboveground biomass estimation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 185-192. |
[8] | ZHAO Yinghui, GUO Xinlong, ZHEN Zhen. Estimation of aboveground biomass of natural secondary forests based on optical-ALS variable combination and non-parametric models [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 49-57. |
[9] | DONG Lingbo, LIU Zhaogang. Forest health assessments and multi-scale conversion methods [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 206-216. |
[10] | ZHANG Yunqi, LIU Chen, LIU Yang, YE Changqi, ZHANG Meng, JIA Liming, HAO Yanbin, SU Shuchai. Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 189-198. |
[11] | ZHOU Hua, MENG Shengwang, LIU Qijing. Allometric equations for estimating aboveground biomass of broad-leaved forests saplings and shrubs in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 79-86. |
[12] | YU Chao, SONG Liyi, LI Mingyang, Omidreza Shobairi SEYED, ZHANG Xiangyang. Spatio-temporal dynamics of forest aboveground biomass in Xixia County, Henan Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 93-101. |
[13] | MIAO Zheng, DONG Lihu, LI Fengri, BAI Dongxue, WANG Jiahui . Modelling the vertical variation in the number of second order branches of Pinus koraiensis plantation trees through GLMM [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 121-128. |
[14] | WANG Jianjun, MENG Jinghui. Determining optimal window size based on correlation between texture information and stand structural diversity indices [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(03): 112-116. |
[15] | YANG Ming,WANG Yueting,ZHANG Xiaoli. Study on the model for estimating forest volume of Chinese fir based on bi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 107-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||