SSR loci associated with population adaptation in Eucalyptus cloeziana

WANG Li, LI Changrong, LI Fagen, ZHOU Changpin, WENG Qijie, LÜ Jiabin, CHEN Jianbo, CHEN Jiancheng, GAN Siming

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (5) : 59-66.

PDF(2349 KB)
PDF(2349 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (5) : 59-66. DOI: 10.3969/j.issn.1000-2006.201811018

SSR loci associated with population adaptation in Eucalyptus cloeziana

Author information +
History +

Abstract

【Objective】 Genomic loci that are significantly associated with population adaptation were detected inEucalyptus cloeziana F. Muell. populations to obtain useful molecular information for germplasm conservation and utilization. 【Method】 Seven northern and southern populations of E. cloeziana were analyzed using 84 simple sequence repeats (SSR) markers [29 genomic SSRs and 55 expressed sequence tag (EST) derived SSRs]. Isolation by distance (IBD) among populations was determined using Mantel test. Outlier loci ofF-statistics of between-population differentiation (Fst) and their significant allelic associations with habitat climatic variables were investigated for all the SSR loci, with further functional annotation of the significantly associated loci against the NCBI non-redundant protein database. 【Result】 IBD was revealed between the northern and southern populations of E.cloeziana, and the clustering analysis based on 19 climatic variables also resulted in division of the northern and southern populations into independent groups, suggesting the climatic effect on driving the population divergence. A total of 39 Fst outliers (46.4%) were identified as selective loci. Specifically, the software LOSITAN detected 12 positive and 17 balancing selection loci. Six alleles from five outlier loci were identified with spatial analysis methods, each associated significantly with one or more climatic factors (P < 0.001) and showed dramatic difference in allelic frequency between the northern and southern populations. Among the six significant alleles, Embra6-118 bp was associated with the minimum temperature of the coldest month ( Tmcm), with the locus Embra6 functionally annotated as basic helix-loop-helix (bHLH) transcript factor bHLH155. The allele Embra20-121 bp was associated with the precipitation of the warmest quarter (Pwq), with Embra20 functionally annotated as sucrose transporters. EUCeSSR676-168 bp was associated with Tmcm, Pwq, the mean annual temperature (Tma) and the minimum temperature of the warmest month (Tmwm), with the locus functionally annotated as photosystem II stability/assembly factor HCF136. However, the two other significant markers EUCeSSR298 and EUCeSSR1009 were of unknown function. 【Conclusion】 The divergence between the northern and southern populations of E. cloeziana was strongly related with historical climate, and there might be glacial refugia in the northern and southern zones during the Quaternary. The marked difference in the frequency of climate-associated SSR alleles between the northern and southern populations provides molecular evidence for positive selection oriented climatic adaptation in E. cloeziana.

Key words

Eucalyptus cloeziana / SSR marker / climatic factor / positive selection / population adaptation / isolation by distance (IBD)

Cite this article

Download Citations
WANG Li , LI Changrong , LI Fagen , et al . SSR loci associated with population adaptation in Eucalyptus cloeziana[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(5): 59-66 https://doi.org/10.3969/j.issn.1000-2006.201811018

References

[1]
ROOT T L, PRICE J T, HALL K R, et al. Fingerprints of globalwarming on wild animals and plants[J]. Nature, 2003, 421(6918):57-60. DOI: 10.1038/nature01333.
[2]
DAVIS M B, SHAW R G. Range shifts and adaptive responses to Quaternary climate change[J]. Science, 2001, 292(5517):673-679. DOI: 10.1126/science.292.5517.673.
[3]
JUMP A S, PEÑUELAS J. Running to stand still: adaptation and the response of plants to rapid climate change[J]. Ecology Letters, 2005, 8(9):1010-1020. DOI: 10.1111/j.1461-0248.2005.00796.x.
[4]
SAVOLAINEN O, LASCOUX M, MERILÄ J. Ecological genomics of local adaptation[J]. Nature Reviews Genetics, 2013, 14(11):807-820. DOI: 10.1038/nrg3522.
[5]
DELPH L F. The study of local adaptation: a thriving field of research[J]. Journal of Heredity, 2018, 109(1):1-2. DOI: 10.1093/jhered/esx099.
[6]
CSILLÉRY K, LALAGÜE H, VENDRAMIN G G. Detecting short spatial scale local adaptation andepistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations[J]. Molecular Ecology, 2014, 23(19):4696-4708. DOI: 10.1111/mec.12902.
[7]
AITKEN SN, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration orextirpation: climate change outcomes for tree populations[J]. Evolutionary Applications, 2008, 1(1), 95-111. DOI: 10.1111/j.1752-4571.2007.00013.x.
[8]
SAVOLAINEN O, PYHÄJÄRVI T, KNÜRR T. Gene flow and local adaptation in trees[J]. Annual Review of Ecology, Evolution, and Systematics, 2007, 38:595-619. DOI: 10.1146/annurev.ecolsys.38.091206.095646.
[9]
KAWECKI T J, EBERT D. Conceptual issues in local adaptation[J]. Ecology Letters, 2004, 7(12):1225-1241. DOI: 10.1111/j.1461-0248.2004.00684.x.
[10]
GIENAPP P, TEPLITSKY C, ALHO J S, et al. Climate change and evolution: disentangling environmental and genetic responses[J]. Molecular Ecology, 2008, 17(1):167-178. DOI: 10.1111/j.1365-294X.2007.03413.x.
[11]
BRADBURY D, SMITHSON A, KRAUSS S L. Signatures of diversifying selection at EST-SSR loci and association with climate in naturalEucalyptus populations[J]. Molecular Ecology, 2013, 22(20):5112-5129. DOI: 10.1111/mec.12463.
[12]
SONG Z, ZHANG M, LI F, et al. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis ( Myrtaceae) using microsatellites[J]. Scientific Reports, 6:34941. DOI: 10.1038/srep34941.
[13]
LIND B M, MENON M, BOLTE C E, et al. The genomics of local adaptation in trees: are we out of the woods yet[J]. Tree Genetics & Genomes, 2018, 14(2):29. DOI: 10.1007/s11295-017-1224-y.
[14]
BROOKER M I H. A new classification of the genus Eucalyptus L’Hér.(Myrtaceae)[J]. Australian Systematic Botany, 2000, 13(1):79-148. DOI: 10.1071/SB98008.
[15]
TURNBULL J. Geographical variation in Eucalyptus cloeziana F. Muell.[D]. Canberra: Australian National University, 1979.
[16]
NGUGI M R, DOLEY D, HUNT MA, et al. Physiological responses to water stress in Eucalyptus cloeziana and E. argophloia seedlings[J]. Trees, 2004, 18(4):381-389. DOI: 10.1007/s00468-003-0316-5.
[17]
LI C, WENG Q, CHEN J, et al. Genetic parameters for growth and wood mechanical properties inEucalyptus cloeziana F. Muell.[J]. New Forests, 48(1):33-49. DOI: 10.1007/s11056-016-9554-4.
[18]
宋志姣, 杨合宇, 翁启杰, 等. 细叶桉群体的遗传多样性和受选择位点[J]. 林业科学, 2016, 52(9):39-47. DOI: 10.11707/j.1001-7488.20160905.
SONG Z J, YANG H Y, WENG Q J, et al. Genetic diversity and selective loci in Eucalyptus tereticornis populations [J]. Scientia Silvae Sinicae, 2016, 52(9):39-47.
[19]
BRONDANI R P V, WILLIAMS E R, BRONDANI C, et al. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus[J]. BMC Plant Biology, 2006, 6:20. DOI: 10.1186/1471-2229-6-20.
[20]
周长品, 李发根, 翁启杰, 等. PCR产物直接测序和混合克隆测序进行桉树EST-SSR标记开发[J]. 分子植物育种(网络版), 2010, 8(1):e1. DOI: 10.5376/mpb.cn.2010.08.0001.
ZHOU C P, LI F G, WENG Q J, et al. Comparison between direct sequencing and pool-cloning-based sequencing of PCR products in EST-SSR marker development in Eucalyptus [J]. Molecular Plant Breeding (online), 2010, 8(1):e1.
[21]
HE X, WANG Y, LI F, et al. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae)[J]. American Journal of Botany, 2012, 99(4):e134-e148. DOI: 10.3732/ajb.1100442.
[22]
ZHOU C, HE X, LI F, et al. Development of 240 novel EST-SSRs in Eucalyptus L’Hérit.[J]. Molecular Breeding, 2014, 33(1):221-225. DOI: 10.1007/s11032-013-9923-z.
[23]
LI F, GAN S. An optimised protocol for fluorescent-dUTP based SSR genotyping and its application to genetic mapping in Eucalyptus[J]. Silvae Genetica, 2011, 60(1):18-25.
[24]
PEAKALL R, SMOUSE P. GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes, 2006, 6(1):288-295. DOI: 10.1111/j.1471-8286.2005.01155.x.
[25]
HIJMANS R J, CAMERSON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15):1965-1978. DOI: 10.1002/joc.1276.
[26]
ANTAO T, LOPES A, LOPES R J, et al. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method[J]. BMC Bioinformatics, 2008, 9(1):323. DOI: 10.1186/1471-2105-9-323.
[27]
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3):564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
[28]
FOLL M, GAGGIOTTI O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective[J]. Genetics, 2008, 180(2):977-993. DOI: 10.1534/genetics.108.092221.
[29]
STUCKI S, OROZCO-TERWENGEL P, FORESTER B R, et al. High performance computation of landscape genomic models including local indicators of spatial association[J]. Molecular Ecology Resources, 2017, 17(5):1072-1089. DOI: 10.1111/1755-0998.12629.
[30]
王莉, 李昌荣, 李发根, 等. 大花序桉SSR位点多样性和群体结构分析[J]. 分子植物育种, 2019, 17(13):4470-4478. DOI: 10.13271/j.mpb.017.004470.
WANG L, LI C R, LI F G, et al. SSR marker diversity and population structure in Eucalyptus cloeziana [J]. Molecular Plant Breeding, 2019, 17(13):4470-4478.
[31]
HILL R S. Origins of the southeastern Australian vegetation[J]. Philosophical Transactions of the Royal Society B. Biological Science, 2004, 359(1450):1537-1549. DOI: 10.1098/rstb.2004.1526.
[32]
SHEPHERD M, SEXTON T R, THOMAS D, et al. Geographical and historical determinants of SSR variation in Eucalyptus pilularis[J]. Canadian Journal of Forest Research, 2010, 359(1450):1537-1549. DOI: 10.1139/X10-049.
[33]
PRUNIER J, LAROCHE J, BEAULIEU J, et al. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce[J]. Molecular Ecology, 2011, 20(8):1702-1716. DOI: 10.1111/j.1365-294X.2011.05045.x.
[34]
LIN Y, ZHENG H, ZHANG Q, et al. Functional profiling of EcaICE1 transcription factor gene from Eucalyptus camaldulensis, involved in cold response in tobacco plants[J]. Journal of Plant Biochemistry & Biotechnology, 2014, 23(2):141-150. DOI: 10.1007/s13562-013-0192-z.
[35]
LUKATKIN A S. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. the activity of antioxidant enzymes during plant chilling[J]. Russian Journal of Plant Physiology, 2002, 49(6):782-788. DOI: 10.1023/A:1020232700648.
[36]
SAUER N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Letters, 2007, 581(12):2309-2317. DOI: 10.1016/j.febslet.2007.03.048.
[37]
NILSEN E T, MULLER W H. Phenology of the drought-deciduous shrub Lotus scoparius: climatic controls and adaptive significance[J]. Ecological Monographs, 1981, 51(3):323-341. DOI: 10.2307/2937277.
[38]
LIU Y, ZHANG T, LI X, et al. Protective mechanism of desiccation tolerance in Reaumuria soongorica: leaf abscission and sucrose accumulation in the stem[J]. Science in China Ser C: Life Sciences, 2007, 50(1):15-21.DOI: 10.1007/s11427-007-0002-8.
[39]
PLÜCKEN H, MÜLLER B, GROHMANN D, et al. The HCF136 protein is essential for assembly of the photosystem Ⅱ reaction center in Arabidopsis thaliana[J]. FEBS Letters, 2002, 532(1):85-90. DOI: 10.1016/S0014-5793(02)03634-7.
[40]
KOMENDA J, NICKELSEN J, TICHY M, et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem Ⅱ assembly complex and is important for both the efficient assembly and repair of photosystem Ⅱ in Synechocystis sp. PCC 6803[J]. Journal of Biological Chemistry, 2008, 283(33):22390-22399. DOI: 10.1074/jbc.M801917200.
[41]
MEURER J, PLÜCKEN H, KOWALLIK K V, et al. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem Ⅱ in Arabidopsis thaliana[J]. EMBO Journal, 2014, 17(18):5286-5297. DOI: 10.1093/emboj/17.18.5286.
[42]
SCHLÖTTERER C. Hitchhiking mapping-functional genomics from the population genetics perspective[J]. Trends in Genetics, 2003, 19(1):32-38. DOI: 10.1016/S0168-9525(02)00012-4.

RIGHTS & PERMISSIONS

Copyright reserved © 2019
PDF(2349 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/