Effect of cold acclimation on freezing tolerance and antioxidant enzyme activities of callus of Tibet Saussurea laniceps Hand.-Mazz

SHE Lulu, WANG Weijuan, SONG Jingjing, LU Cunfu, CHEN Yuzhen

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (5) : 181-186.

PDF(1765 KB)
PDF(1765 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (5) : 181-186. DOI: 10.3969/j.issn.1000-2006.201811029

Effect of cold acclimation on freezing tolerance and antioxidant enzyme activities of callus of Tibet Saussurea laniceps Hand.-Mazz

Author information +
History +

Abstract

【Objective】 This study aimed to elucidate the mechanisms of physiological and biochemical adaptations of alpine plants to cold acclimation. 【Method】 The callus of Tibet Saussurea laniceps Hand.-Mazz. was selected as the plant material to assess changes in antioxidant enzymes and antioxidants during the process of cold acclimation (4 ℃/0 ℃, day/night, dark, for 0, 3, 6, 9, 12 days, respectively). 【Result】 During the period of cold acclimation, freezing tolerance peaked on day 9, with the lethal temperature (LT50) from -3.5 ℃ to -12.0 ℃. After 4 ℃/0 ℃ cold acclimation, soluble protein, proline content and antioxidant enzyme activity increased significantly, reaching maximum levels on day 9, on which protein content increased by 89.1%, proline content was increased 2.14-fold, and superoxide dismutase(SOD), catalase(CAT) and peroxidase(POD) activity increased by 48.04%, 47.28% and 73.18%, respectively. Furthermore, these results were confirmed by three antioxidant enzyme isozyme zymograms. Cold acclimation increased the content of polyphenols, which were increased 3.91-fold compared with the control on day 12. The polyphenol oxidase(PPO) activity increased by 91.35% compared with the control, and these results were consistent with those for the isozyme. 【Conclusion】 The freezing tolerance ofS. laniceps was significantly increased after cold acclimation, showing a unique adaptation mechanism to the low temperature environment. This study established a feasible experimental system that is valid and referenced for studying endangered plants.

Key words

Saussurea laniceps / callus / cold-hardening / freezing tolerance / antioxidant enzyme / antioxidant substance

Cite this article

Download Citations
SHE Lulu , WANG Weijuan , SONG Jingjing , et al . Effect of cold acclimation on freezing tolerance and antioxidant enzyme activities of callus of Tibet Saussurea laniceps Hand.-Mazz[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(5): 181-186 https://doi.org/10.3969/j.issn.1000-2006.201811029

References

[1]
沈泽昊, 杨明正, 冯建孟, 等. 中国高山植物区系地理格局与环境和空间因素的关系[J]. 生物多样性, 2017, 25(2):182-194. DOI: 10.17520/biods.2017014.
Abstract
高山带是具有极端环境和明确边界的植物分布区, 研究高山植物区系地理对于理解空间彼此隔离的极端高寒环境下植物区系的形成与相互联系具有重要意义。本研究整合了中国境内14座主要山地的高山植物区系数据, 用Jaccard指数测度不同区系之间的相似性, 运用相关分析和Mantel检验方法, 重点分析了中国高山种子植物区系地理成分的构成、不同山地之间的相似性及其环境和空间相关因素。结果表明, 中国山地的高山带分布着物种丰富的种子植物区系, 14座主要山地即包含了65科489属3,670种(含340个种下单位), 主要由北温带分布及其亚型、世界分布、旧世界温带分布和东亚分布及其中国-喜马拉雅分布亚型等成分构成, 缺少中国-日本分布类型, 中国特有属的比例较高(5.2%)。14座山地高山植物区系构成的地理分异显示: 北热带和东亚成分自南向北减少, 而北方温带成分增加; 自西向东古地中海成分减少, 北方温带成分增加, 而东亚成分在中部达到最大值; 在属级地理成分构成上, 北方山地和青藏高原周缘山地构成了区系成分近似的两大群组, 台湾高山植物区系与大陆东部北方高山带的区系联系更密切。地理隔离是高山植物区系分异的首要因素, 高山带的面积大小也影响到其区系成分的构成, 而夏季热量是影响中国高山植物区系地理分异的首要气候因子, 显示全球变暖对未来高山植物区系具有潜在的胁迫作用。
SHEN Z H, YANG M Z, FENG J M, et al. Geographic patterns of alpine flora in China in relation to environmental and spatial factors[J]. Biodiversity Science, 2017, 25(2):52-63.
[2]
何涛, 吴学明, 贾敬芬. 青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展[J]. 生态学报, 2007, 27(6):2574-2583. DOI: 10.3321/j.issn:1000-0933.2007.06.052.
HE T, WU M X, JIA J F. Research advances in m orphology and anatomy of alpine plants growing in the Qinghai-Tibet Plateau and their adaptations to environments[J]. Acta Ecologica Sinica, 2007, 27(6):2574-2583.
[3]
达娃卓玛, 周燕, 白央, 等. 绵头雪莲花的化学成分研究[J]. 中国中药杂志, 2008(9):1032-1035. DOI: 10.3321/j.issn:1001-5302.2008.09.014.
DAWA Z M, ZHOU Y, BAI Y, et al. Studies on chemical constituents of Saussurea laniceps [J]. China Journal of Chinese Materia Medica, 2008(9):1032-1035.
[4]
卢存福, 陈玉珍, 简令成. 高山植物唐古特红景天粘液细胞及叶肉细胞表面糖蛋白与抗冻性的关系[J]. 应用与环境生物学报, 2003, 9(1):16-20. DOI: 10.3321/j.issn:1006-687X.2003.01.004.
LU C F, CHEN Y Z, JIAN L C. Roles of mucilage cells and glycoproteins at mesophyll cell surface in the freezing tolerance of a alpine plant, Rhodiola algida var. tangutica [J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(1):16-20.
[5]
陈玉珍, 李凤兰. 低温锻炼对绵头雪莲花组织培养苗抗寒性及抗氧化酶活性的影响[J]. 植物生理与分子生物学学报, 2005, 31(4):437-440. DOI: 10.3321/j.issn:1671-3877.2005.04.016.
CHEN Y Z, LI F L. Effects of cold-hardening on freezing tolerance and antioxidant enzyme activities in plantlets of Saussurea laniceps Hand.-Mazz [J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(4):437-440.
[6]
叶艳然, 王文莉, 郑成淑, 等. 四种野生苔草属植物的耐寒性评价[J]. 应用生态学报, 2017, 28(1):89-95. DOI: 10.13287/j.1001-9332.201701.035.
YE Y R, WANG W L, ZHENG C S. Evaluation of cold resistance of four wild Carex speices [J]. Chinese Journal of Applied Ecology, 2017, 28(1):89-95.
[7]
王秀田, 卢秋巍, 苍晶, 等. 低温驯化对冬小麦叶绿素荧光特性及抗氧化酶活性的影响[J]. 植物生理学报, 2016, 52(12):1959-1969. DOI: 10.13592/j.cnki.ppj.2016.0352.
WANG X T, LU Q W, CANG J, et al. Effects of cold acclimation on chlorophyll fluorescence characteristics and antioxidant enzyme activity in winter wheat[J]. Plant Physiology Journal 2016, 52(12):1959-1969.
[8]
金德善, 卢存福, 兰小中, 等. 雪莲愈伤组织蛋白质提取及双向电泳分析[J]. 西北植物学报, 2012, 32(9):1903-1909. DOI: 10.3969/j.issn.1000-4025.2012.09.027.
JIN D S, LU C F, LAN X Z, et al. Sample preparation methods suitable for Saussurea involucrata callus proteom analysis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(9):1903-1909.
[9]
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72:248-254. DOI: 10.1016/0003-2697(76)90527-3.
[10]
OMRAN R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings[J]. Plant Physiology, 1980, 65:407-408.DOI: 10.1104/pp.65.2.407.
[11]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Higher Education Press, 2000.
[12]
汤章城. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999.
[13]
刘松, 李俊清, 廖蓉苏. 普鲁士兰法测定胡杨中植物多酚含量[J]. 林业科技开发, 2007, 21(2):42-44.DOI: 10.3969/j.issn.1000-8101.2007.02.013.
LIU S, LI J Q, LIAO R S. A study on the determination of phenolic compounds content in Populus euphratica with prussian blue spectrophotometry [J]. China Forestry Science and Technology, 2007, 21(2):42-44.
[14]
陈玉珍, 卢存福. 水母雪莲愈伤组织和悬浮培养细胞的抗冻性研究[J]. 植物学报, 2002, 19:219-223.DOI: 10.3969/j.issn.1674-3466.2002.02.013.
Abstract
水母雪莲(Saussurea meduasaMaxim)是典型的高山雪线植物。本文研究了其愈伤组织及悬浮细胞的培养过程,并对其抗寒性做了初步研究。 研究结果表明,水母雪莲愈伤组织和悬浮培养细胞分别可抵抗-6.5 ℃、-7.5 ℃的冰冻低温胁迫。水母雪莲愈伤组织细胞内丰富的蛋白质和淀粉粒多糖构成其较强抗冻能力的物质基础。低温锻炼后,悬浮细胞分泌蛋白中有新的多肽(76,48,27.5,19.5 kD)合成,而33,51 kD两条多肽合成增强。悬浮细胞抗冻能力的提高同蛋白质合成的增强是一致的。
CHEN Y Z, LU C F. Freezing tolerance of calli and suspension cell cultures in alpine plant Saussurea meduasa Maxim [J]. Chinese Bulletin of Botany, 2002, 19(2):219-223.
[15]
ENSMINGER I, BUSCH F, HUNER NPA. Photostasis and cold acclimation: sensing low temperature through photosynjournal[J]. Physiologia Plantarum, 2006, 126:28-44. DOI: 10.1111/j.1399-3054.2006.00627.x.
[17]
魏秀清, 余东, 章希娟, 等. 6个杧果品种耐寒性的研究[J]. 果树学报, 2017(5):594-602. DOI: 10.13925/j.cnki.gsxb.20160331.
WEI X Q, YU D, ZHANG X J, et al. A study on cold resistance in six mango cultivars[J]. Journal of Fruit Science, 2017(5):594-602.
[18]
徐田, 毕玮, 陈剑. 应用Logistic方程确定巨龙竹叶片低温半致死温度[J]. 竹子学报, 2018, 37(2):75-78. DOI: 10.19560/j.cnki.issn1000-6567.2018.02.012.
XU T, BI W, CHEN J. Application of logistic equation on determination of semilethal low temperature of Dendrocalamus sinicus [J]. Journal of Bamboo Research, 2018, 37(2):75-78.
[19]
HUI W, DHANARAJ A L, ROWLAND L J, et al. Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx[J]. Planta, 2005, 221:406-416. DOI: 10.1007/s00425-004-1440-1.
[21]
HÜNER N P, DAHAL K, KUREPIN L V, et al. Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid[J]. Frontiers in Chemistry, 2014, 2:18.DOI: 10.3389/fchem.2014.00018.
[22]
彭筱娜, 易自力, 蒋建雄. 植物抗寒性研究进展[J]. 生物技术通报, 2007(4):15-18. DOI: 10.3969/j.issn.1002-5464.2007.04.004.
PENG X N, YI Z L, JIANG J X. Progress in the study of cold resistance in plant[J]. Biotechnology Bulletin, 2007(4):15-18.
[23]
刘丰娇, 蔡冰冰, 孙胜楠, 等. 富氢水浸种增强黄瓜幼苗耐冷性的作用及其生理机制[J]. 中国农业科学, 2017, 50(5):881-889. DOI: 10.3864/j.issn.0578-1752.2017.05.011.
LIU F J, CAI B B, SUN S N, et al. Effect of hydrogen-rich water soaked cucumber seeds on cold tolerance and its physiological mechanism in cucumber seedlings[J]. Scientia Agricultura Sinica, 2017, 50(5):881-889.
[24]
刘小金, 徐大平, 杨曾奖, 等. 脱落酸对檀香幼苗生长、光合及叶片抗氧化酶活性的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(3):57-62. DOI: 10.3969/j.issn.1000-2006.2016.03.010.
LIU X J, XU D P, YANG Z J, et al. Effects of abscisic acid on growth, photosynjournal and antioxidant enzyme activities of indian sandalwral Santalum album seedlings [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(3):57-62.
[25]
相昆, 张美勇, 徐颖, 等. 不同核桃品种耐寒特性综合评价[J]. 应用生态学报, 2011, 22(9):2325-2330. DOI: 10.13287/j.1001-9332.2011.0328.
XIANG K, ZHANG M Y, XU Y, et al. Cold-tolerance of walnut cultivars: A comprehensive evaluation[J]. Chinese Journal of Applied Ecology, 2011, 22(9):2325-2330.
[26]
杨慧芹, 王莎莎, 张建波, 等. 烟草多酚代谢对干旱和低温胁迫的响应差异及其比较[J]. 基因组学与应用生物学, 2015, 34(3):645-654. DOI: 10.13417/j.gab.034.000645.
YANG H Q, WANG S S, ZHANG J B, et al. Differential response and comparison of polyphenols metabolism in tobacco seedling under the stresses of drought and low temperature[J]. Genomics and Applied Biology, 2015, 34(3):645-654.
[27]
DE LA ROSA LA, ALVAREZ-PARRILLA E, SHAHIDI F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis)[J]. Journal of Agricultural ang Food Chemistry, 2011, 59:152-162. DOI: 10.1021/jf1034306.
[28]
冷平, 张国军, 吴晓云, 等. 秋冬季节柿属植物树体内酚类物质含量的变化[J]. 中国农业大学学报, 2001, 6(1):63-67. DOI: 10.3321/j.issn:1007-4333.2001.01.011.
LENG P, ZHANG G J, WU X Y, et al. Change of phenols in persimmon during autumn and winter[J]. Journal of China Ag ricultural Univ ersity. 2001, 6(1):63-67.
[29]
WRÓBEL M, KARAMA M, AMAROWICZ R, et al. Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions[J]. Acta Physiologiae Plantarum, 2005, 27:313-320. DOI: 10.1007/s11738-005-0008-4.
[30]
MAYER A M. Polyphenol oxidases in plants and fungi: Going places? A review[J]. Phytochemistry, 2006, 67:2318-2331. DOI: 10.1016/j.phytochem.2006.08.006.
[31]
ODE P. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions[J]. Annual Review of Entomology, 2006, 51:163-185. DOI: 10.1146/annurev.ento.51.

RIGHTS & PERMISSIONS

Copyright reserved © 2019
PDF(1765 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/