
The spatially differentiated factors of forest pest control pressure
CAI Qi, CAI Yushi, LI Yan, HOU Yilei, WEN Yali
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (1) : 111-118.
The spatially differentiated factors of forest pest control pressure
【Objective】 As China is facing spatially differentiated forest pest control pressure, the economic and ecological losses of forest resources would increase. In this paper, we assessed the control pressure and its influencing factors, summarized the spatial features, and proposed advices to improve the outcomes. 【Method】 We first analyzed the current control pressure and divided the natural control pressure for each province into three degrees through the Cluster Analysis method; then, we examined the reasons and factors driving the spatial differentiation of the control pressure based on the panel calibration standard error model (PCSE). We depicted the final results on the map of China and compared them with the control rate and ecological control rate.【Result】 The results showed that China forest pest control is under huge pressure, as the recent control system could only recover half of the damage with low efficiency of the input fund utilization; in addition, the number of control workers and institutions are far from satisfying the regional control necessity. Moreover, according to the “Matthew Effect”, the ecological control awareness in the western part of “HU Huanyong” scored weaker than in the eastern part, while the control measures hardly satisfied the increased control pressure in the west. 【Conclusion】 Firstly, the government needs to provide the infrastructure according to regional development needs, and improve the professional skills of control workers. Then, socialized control organizations should be established by mobilizing social forces to diminish the regional differences and solitary governmental control pressure, while also reinforcing the ecological balance of natural resources.
forest pest disaster / control pressure / spatially difference / panel calibration standard error model (PCSE)
[1] |
张继权, 刘兴朋, 严登华. 综合灾害风险管理导论[M]. 北京: 北京大学出版社, 2012.
|
[2] |
|
[3] |
宋玉双, 苏宏钧, 于海英, 等. 2006—2010年我国林业有害生物灾害损失评估[J]. 中国森林病虫, 2011, 30(6):1-4, 24.
|
[4] |
闫峻. 我国林业生物灾害管理的经济学分析与对策研究[D]. 北京:北京林业大学, 2008.
|
[5] |
国务院. 森林病虫害防治条例[J]. 内蒙古林业 1990(2):2-3.
|
[6] |
国家林业局. 中国林业统计年鉴[M]. 北京: 中国林业出版社, 2014.
|
[7] |
乔恒, 高峻崇. 林业有害生物灾害应急管理[M]. 北京: 中国林业出版社, 2011.
|
[8] |
李亚娟, 陈田, 王婧, 等. 中国历史文化名村的时空分布特征及成因[J]. 地理研究, 2013, 32(8):1477-1485.
古村落是具有文化遗产性质的乡村聚落,选取古村落发展中最具代表性的国家级历史文化名村来分析中国古村落的空间分布特征,探讨其影响因素和分布原因,从而进一步引导中国乡村地区的同步发展,促进城乡一体化进程。研究表明:① 我国历史文化名村主要沿河流分布、多是历史上的经济文化中心、交通要塞和文明的发祥地,并形成了3 大集中区、3 大相对集中区和4 大过渡扩散区,孕育了6 个文化区;② 中国历史文化名村建造时间跨度较大,但多集中在唐宋明清4 个朝代,明朝保留下来的古村落最多,分布范围最广;③ 造成中国历史文化名村分布不均衡的主要原因有资源禀赋特点、评定标准的局限、依托腹地的经济发达程度和区域政策导向。
|
[9] |
孔钦钦, 郑景云, 王新歌. 1979—2014年中国气候舒适度空间格局及时空变化[J]. 资源科学, 2016, 38(6):1129-1139.
|
[10] |
杨远盛, 张晓霞, 于海艳, 等. 中国森林生物量的空间分布及其影响因素[J]. 西南林业大学学报, 2015, 35(6):45-52.
|
[11] |
胡焕庸. 中国人口之分布——附统计表与密度图[J]. 地理学报 1935(2):33-74.
年来中外学者,研究中国人口问题者,日见其多,中国人口是否过剩,国境以内,是否尚有大量移民之可能,此实当今亟须解答之间题,各方对此之意见,甚为纷歧;或则谓中国人口,实已过剩,此可由社会生计艰难,失业问题严重,以及海外侨民之多可以证之;或则谓中国人口,实未过剩,以全国面积除全国人口,计算其密度,较之欧西诸国,尚不及远甚,国境西北部,地旷而人稀,将来实大有移民之可能.
|
[12] |
|
[13] |
|
[14] |
徐玮, 冯彦, 包庆丰. 中国林业生产效率测算及区域差异分析: 基于Malmquist-DEA模型的省际面板数据[J]. 林业经济, 2015, 37(5):85-88.
|
[15] |
史常亮, 朱俊峰, 揭昌亮. 中国农业全要素生产率增长地区差异及收敛性分析:基于固定效应SFA模型和面板单位根方法[J]. 经济问题探索 2016(4):134-141.
|
[16] |
罗小锋, 李兆亮, 李容容, 等. 中国林业生产效率的时空差异及其影响因素研究[J]. 干旱区资源与环境, 2017, 31(3):95-100.
|
[17] |
|
[18] |
|
[19] |
闫峻, 刘俊昌. 论林业有害生物防治的外部经济效应[J]. 中国森林病虫, 2005, 24(6):12-14.
|
[20] |
姜宝, 邢晓丹, 李剑. “走出去”战略下中国对欧盟逆向投资的贸易效应研究:基于FGLS和PCSE修正的面板数据模型[J]. 国际贸易问题 2015(9):167-176.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
国家林业局森林病虫害防治总站. 林业有害生物监测预报技术[M]. 北京: 中国林业出版社, 2013.
State of Forest Pest Control Administration (SFPCA). Forest pest monitoring and forecasting technology [M]. Beijing: China Forestry Publishing House, 2013.
|
/
〈 |
|
〉 |