Genetic variation and improved parents selection of open pollination families of Picea crassifolia Kom. basing one BLUP method

OUYANG Fangqun, QI Shengxiu, FAN Guoxia, CAI Qishan, CHEN Haiqing, GAO Wanli, HU Changshou, WANG Junhui

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (6) : 53-59.

PDF(1642 KB)
PDF(1642 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (6) : 53-59. DOI: 10.3969/j.issn.1000-2006.201812002

Genetic variation and improved parents selection of open pollination families of Picea crassifolia Kom. basing one BLUP method

Author information +
History +

Abstract

【Objective】 The best linear unbiased prediction (BLUP) method forecasts a breeding value using a mixed linear model equation, which reflects true genetic effects with high accuracy. 【Method】 This study used two open pollination progeny tests of Picea crassifolia Kom. at 13 and 14 years old obtained from a primary clonal seed orchardto evaluate genetic variation in height. A breeding value was predicted using the BLUP method. 【Result】Our results showed that family and interaction effects between family and blocks significantly affected height. The family hereditability for height of the trees from the two open pollination progeny were 0.17 and 0.36, respectively, while the individual hereditability were both 0.07. The Pearson correlation between the original value and the breeding value of the height at family level, or at individual level, were both high, and the Pearson correlation coefficients were 0.99 and 0.86, respectively. According to the breeding value of the parents of the families, 20 elite families were chosen and the reality genetic gain reached 36% and 26%, respectively. According to the individual breeding value estimated using the BLUP method, 20 plus trees were chosen, and the expected genetic gains were 7.6% and 7.9%, respectively. 【Conclusion】By comparing the genetic gain of backward selection and forward selection, it was determined that backward selection is the better choice in high-generation breeding ofPicea crassifolia.

Key words

Picea crassifolia Kom. / improved generation of parents / best linenr unbiased prediction (BLUP) / combining selection / breeding value

Cite this article

Download Citations
OUYANG Fangqun , QI Shengxiu , FAN Guoxia , et al . Genetic variation and improved parents selection of open pollination families of Picea crassifolia Kom. basing one BLUP method[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(6): 53-59 https://doi.org/10.3969/j.issn.1000-2006.201812002

References

[1]
PIEPHO H P, MÖHRING J, MELCHINGER A E, et al. BLUP for phenotypic selection in plant breeding and variety testing[J]. Euphytica, 2008, 161(1/2):209-228. DOI: 10.1007/s10681-007-9449-8.
[2]
HODGE G R, WHITE T L. Advanced-generation wind-pollinated seed orchard design[J]. New Forests, 1993, 7(3):213-236. DOI: 10.1007/bf00127387.
[3]
杨秀艳, 张守攻, 孙晓梅, 等. 北亚热带高山区日本落叶松自由授粉家系遗传测定与二代优树选择[J]. 林业科学, 2010, 46(8):45-50.
YANG X Y, ZHANG S G, SUN X M, et al. Genetic test of open-pollinated Larix kaempferi families and selection for the second generation elite trees in northern sub-tropical alpine area [J]. Scientia Silvae Sinicae, 2010, 46(8):45-50.
[4]
孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析[J]. 北京林业大学学报, 2011, 33(2):65-71. DOI: 10.13332/j.1000-1522.2011.02.020.
SUN X M, YANG X Y. Applications and analysis of methods for breeding value prediction in forest trees[J]. Journal of Beijing Forestry University, 2011, 33(2):65-71. DOI: 10.13332/j.1000-1522.2011.02.020.
[5]
DE R, PRATES D F, DE J A, et al. Best linear unbiased prediction (BLUP) of breeding values inPinus improvement[J]. Parte do Boletim de Pesquisa Florestal, Colombo, 1996(32/33):3-22.
[6]
廖柏勇, 莫晓勇, 陈文平, 等. 10年生粗皮桉优良种源家系选择分析——BLUP法[C]// 第13次全国林木引种驯化暨遗传育种(南方)学术研讨会.广东:中国林学会树木引种驯化专业委员会与中国林学会育种分会, 2010.
LIAO B Y, MO X Y, CHEN W P. Analysis on the selection of excellent provenances of 10-year-old eucalyptus grandis:BLUP method[C]// Guangdong: The 13th national forest introduction and domestication and genetic breeding, 2010.
[7]
刘天颐, 杨会肖, 刘纯鑫, 等. 火炬松基因资源的育种值预测与选择[J]. 林业科学, 2014, 50(8):60-67. DOI: 10.11707/j.1001-7488.20140809.
LIU T Y, YANG H X, LIU C X, et al. Prediction of breeding values and selection to the gene resources of loblolly pine[J]. Scientia Silvae Sinicae, 2014, 50(8):60-67.
[8]
马常耕. 高世代种子园营建研究的进展[J]. 世界林业研究, 1994, 7(1):31-38. DOI: 10.13348/j.cnki.sjlyyj.1994.01.006.
MA C G. Progress in researches on the construction and Management of advanced generation seed orchards[J]. World Forestry Research, 1994, 7(1):31-38.
[9]
RROBINSON G K. That BLUP is a good thing: the estimation of random effects[J]. Statistical Science, 1991, 6(1), 15-32. DOI: 10.1214/ss/1177011926.
[10]
SAS. SAS/STAT User’s Guide, Version 6[CP/OL]. 4th end. SAS Institute, Cary, NC, USA. [2018- 02- 01] http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm
[11]
GILMOUR A R, GOGEL B J, CULLIS B R, et al. ASReml User Guide Release 3.0 VSN international Ltd, Hemel Hempstead, HP1 1ES, UK. 2009. www.vsni.co.uk.
[12]
王明庥. 森林遗传管理的现代基础理论与技术: 林木遗传育种学[J]. 南京林业大学学报(自然科学版), 2001, 25(5):1-5. DOI: 10.3969/j.issn.1000-2006.2001.05.001.
WANG M X. Modern basic theory and technique for forest genetic management: forest genetics and breeding[J]. Journal of Nanjing Forestry University, 2001, 25(5):1-5.
[13]
陈晓阳, 沈熙环. 林木育种学[M]. 北京: 高等教育出版社, 2005.
[14]
BUSH D, KAIN D, KANOWSKI P, et al. Genetic parameter estimates informed by a marker-based pedigree: a case study with Eucalyptus cladocalyx in southern Australia[J]. Tree Genetics & Genomes, 2014, 11(1):1-16. DOI: 10.1007/s11295-014-0798-x.
[15]
FRANKHAM R. Introduction to quantitative genetics 4th ed[J]. Trends in Genetics, 1996, 12(7):280. DOI: 10.1016/0168-9525(96)81458-2.
[16]
RUOTSALAINEN S, LINDGREN D. Predicting genetic gain of backward and forward selection in forest tree breeding[J]. Silvae Genetica, 1998, 47(1):42-50.
[17]
LEE S J. Breeding strategy for Sitka spruce in Britain: progeny testing and breeding strategies[C]. Edinburgh, Scotland: Proceedings of the Nordic Group for Tree Breeding, 1993: 95-107.
[18]
EL-KASSABY Y A, CAPPA E P, LIEWLAKSANEEYANAWIN C, et al. Breeding without breeding: is a complete pedigree necessary for efficient breeding?[J]. PLoS One, 2011, 6(10):e25737. DOI: 10.1371/journal.pone.0025737.
[19]
YUAN H W, NIU S H, EL-KASSABY Y A, et al. Simple genetic distance-optimized field deployments for clonal seed orchards based on microsatellite markers: as a case of Chinese pine seed orchard[J]. PLoS One, 2016, 11(6):e0157646. DOI: 10.1371/journal.pone.0157646.
[20]
袁虎威, 梁胜发, 符学军, 等. 山西油松第二代种子园亲本选择与配置设计[J]. 北京林业大学学报, 2016, 38(3):47-54. DOI: 10.13332/j.1000-1522.20150370.
YUAN H W, LIANG S F, FU X J, et al. Parental selection and deployment design in the second-generation seed orchard of Chinese pine in Shanxi Province[J]. Journal of Beijing Forestry University, 2016, 38(3):47-54.
[21]
EL-KASSABY Y A, KLÁPŠTĚ J, GUY R D. Breeding without breeding: selection using the genomic best linear unbiased predictor method (GBLUP)[J]. New Forests, 2012, 43(5/6):631-637. DOI: 10.1007/s11056-012-9338-4.
[22]
RATCLIFFE B, EL-DIEN O G, KLÁPŠTĚ J, et al. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods[J]. Heredity, 2015, 115(6):547-555. DOI: 10.1038/hdy.2015.57.
[23]
CHEN Z Q, KARLSSON B, WU H X. Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden[J]. Tree Genetics & Genomes, 2017, 13:25. DOI: 10.1007/s11295-017-1103-6.
[24]
BALTUNIS B S, GAPARE W J, WU H X. Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia[J]. Silvae Genetica, 2010, 59(1/2/3/4/5/6):113-124. DOI: 10.1515/sg-2010-0014.

RIGHTS & PERMISSIONS

Copyright reserved © 2019
PDF(1642 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/