The role of β-cyanoalanin synthase in polar leaves under salt stress

LIAO Yangwenke, CUI Rongrong, XIE Yinfeng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (6) : 137-142.

PDF(1672 KB)
PDF(1672 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (6) : 137-142. DOI: 10.3969/j.issn.1000-2006.201902001

The role of β-cyanoalanin synthase in polar leaves under salt stress

Author information +
History +

Abstract

【Objective】This study aimed to investigate the role of mitochondrial β-cyanoalanine synthase (CAS) in the induction of the ethylene (ETH)-associated alternative oxidase (AOX) pathway in response to salt stress in woody plants. 【Method】 We studied the 1-aminocyclopropane-1-carboxylic acid (ACC, an ETH precursor) content using high performance liquid chromatography, the gene relative expression via quantitative real-time PCR, and cysteine levels using colorimetric methods in NaCl-treated Bopulus×enramericana ‘Nanlin 895’ (salt-insensitive clone hybrids) leaves. 【Result】 Salt stress to ‘Nanlin 895’steckling caused an accumulation of ACC and rapid up-regulation in the expression of ETH biosynthetic genes ( ACS7 and ACO3), the mitochondrial CAS gene (CYS C1), and the β-cyanoalaninenitrilases gene (NIT 4), followed by an increase in AOX1b expression and a decrease in the transcription level of the cytochrome c oxidase gene (COX6b) in the leaves. The application of salicylhydroxamic acid (SHAM, an AOX inhibitor) significantly reduced AOX1b expression and elevated the malonyldialdehyde (MDA) concentration and electrolyte leakage (EL) level but had no evident effect on the expression of CYS C1. Conversely, the modulation of aminooxyacetic acid (AOA, an ETH biosynthesis inhibitor) not only reduced CYS C1 transcription, but also blocked salt-induced AOX1b expression and increased the levels of MDA and EL. Furthermore, AOA recovered the salt-reduced cysteine content, whereas both SHAM and antimycin A (an AOX activator) failed to affect the cysteine level. 【Conclusion】 These results indicate that mitochondrial CYS C1 is involved in the ETH-induced pathway, functioning upstream of AOX in poplar responses to salt stress.

Key words

ethylene / β-cyanoalanine synthase / alternative oxidase / cyanide / salt stress / poplar (Populus spp.)

Cite this article

Download Citations
LIAO Yangwenke , CUI Rongrong , XIE Yinfeng. The role of β-cyanoalanin synthase in polar leaves under salt stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(6): 137-142 https://doi.org/10.3969/j.issn.1000-2006.201902001

References

[1]
BLEECKER A B, KENDE H. Ethylene: a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology, 2000, 16(1):1-18. DOI: 10.1146/annurev.cellbio.16.1.1.
[2]
CAO W H, LIU J, HE X J, et al. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant Physiol, 2007, 143(2):707-719. DOI: 10.1104/pp.106.094292.
[3]
VAHALA J, RUONALA R, KEINÄNEN M, et al. Ethylene insensitivity modulates ozone-induced cell death in birch[J]. Plant Physiol, 2003, 132(1):185-195. DOI: 10.1104/pp.102.018887.
[4]
WANG H H, LIANG X L, WAN Q, et al. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress[J]. Planta, 2009, 230(2):293-307. DOI: 10.1007/s00425-009-0946-y.
[5]
PEISER G D, WANG T T, HOFFMAN N E, et al. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10) 3059-3063. DOI: 10.1073/pnas.81.10.3059.
[6]
SIEGIEN I, BOGATEK R. Cyanide action in plants-from toxic to regulatory[J]. Acta Physiolo Plant, 2006, 28(5):483-497. DOI: 10.1007/bf02706632.
[7]
ÁLVAREZ C, GARCIA I, ROMERO L C, et al. Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana[J]. Molecular Plant, 2012, 5(6):1217-1226. DOI: 10.1093/mp/sss043.
[8]
PIOTROWSKI M. Primary or secondary? Versatile nitrilases in plant metabolism[J]. Phytochemistry, 2008, 69(15):2655-2667. DOI: 10.1016/j.phytochem.2008.08.020.
[9]
HATZFELD Y, MARUYAMA A, SCHMIDT A, et al. beta-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis[J]. Plant Physiol, 2000, 123(3):1163-1172. DOI: 10.1104/pp.123.3.1163.
[10]
WATANABE M, KUSANO M, OIKAWA A, et al. Physiological roles of the β-substituted alanine synthase gene family in Arabidopsis[J]. Plant Physiol, 2008, 146(1):310-320. DOI: 10.1104/pp.107.106831.
[11]
余璐璐, 曹中权, 刘龙山, 等. 盐芥CAS基因的生物信息学分析及在盐胁迫下的表达[J]. 江苏农业科学, 2015, 43(7):25-29. DOI: 10.15889/j.issn.1002-1302,2015,07,007.43.
[12]
DA SILVA C J, BATISTA FONTES E P, MODOLO L V. Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana[J]. Plant Science, 2017, 256:148-159. DOI: 10.1016/j.plantsci.2016.12.011.
[13]
GARCÍA I, ROSAS T, BEJARANO E R, et al. Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response[J]. Plant Physiol, 2013, 162(4):2015-2027. DOI: 10.1104/pp.113.219436.
[14]
CHIVASA S, CARR J P. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase[J]. Plant Cell, 1998, 10(9):1489-1498. DOI: 10.1105/tpc.10.9.1489.
[15]
CHIVASA S, MURPHY A M, NAYLOR M, et al. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism[J]. Plant Cell, 1997, 9(4):547-557. DOI: 10.1105tpc.9.4.547.
[16]
WANG H H, LIANG X L, HUANG J J, et al. Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses[J]. Plant and Cell Physiol, 2010, 51(10):1754-1765. DOI: 10.1093/pcp/pcq134.
[17]
JANSSON S, DOUGLAS C J. Populus: A model system for plant biology[J]. Annual Review of Plant Biology, 2007, 58(1):435-458. DOI: 10.1146/annurev.arplant.58.032806.103956.
[18]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔct Tmethod[J]. Methods, 2001, 25(4):402-408. DOI: 10.1006/meth.2001.1262.
[19]
LIZADA M C, YANG S F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid[J]. Analytical Biochemistry, 1979, 100(1):140-145. DOI: 10.1016/0003-2697(79)90123-4.
[20]
GAITONDE M K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids[J]. The Biochem J, 1967, 104(2):627-633. DOI: 10.1042/bj1040627.
[21]
TAKÁCS Z, POÓR P, TARI I. Comparison of polyamine metabolism in tomato plants exposed to different concentrations of salicylic acid under light or dark conditions[J]. Plant Physiol Biochem, 2016, 108:266-278. DOI: 10.1016/j.plaphy.2016.07.020.
[22]
KHAN M M, ISLAM E, IREM S, et al. Pb-induced phytotoxicity in para grass (Brachiaria mutica) and Castorbean (Ricinus communis L.): antioxidant and ultrastructural studies[J]. Chemosphere, 2018, 200:257-265. DOI: 10.1016/j.chemosphere.2018.02.101.
[23]
WANG H H, HUANG J J, BI Y R. Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress[J]. Plant Signaling &Behavior, 2010, 5(12):1636-1637. DOI: 10.4161/psb.5.12.13775.
[24]
ZHU L, LI Y M, LI L, et al. Ethylene is involved in leafy mustard systemic resistance to Turnip mosaic virus infection through the mitochondrial alternative oxidase pathway[J]. Physiol Mol Plant Pathol, 2011, 76(3/4):166-172. DOI: 10.1016/j.pmpp.2011.09.005.
[25]
LI Z G. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants[M]//CADENAS E, PACKER L. Hydrogen sulfide in redox biology. Pt B. San Diego: Elsevier Academic Press Inc, 2015: 253-269. DOI: 10.1016/bs.mie.2014.11.035.
[26]
GARCÍA I, CASTELLANO J M, VIOQUE B, et al. Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(10):3268-3279. DOI: 10.1105/tpc.110.076828.
[27]
MØLLER I M. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species[J]. Ann Rev Plant Physiol Plant & MolBiol, 2001, 52(1):561-591. DOI: 10.1146/annurev.arplant.52.1.561.
[28]
WAGNER A M, MOORE A L. Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism[J]. Bioscience Reports, 1997, 17(3):319-333. DOI: 10.1023/a:1027388729586.

RIGHTS & PERMISSIONS

Copyright reserved © 2019
PDF(1672 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/