JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (6): 184-192.doi: 10.3969/j.issn.1000-2006.201903038
Previous Articles Next Articles
HE Pei(), XIA Wanqi, JIANG Lichun*(
)
Received:
2019-03-14
Revised:
2019-11-04
Online:
2020-11-30
Published:
2020-12-07
Contact:
JIANG Lichun
E-mail:hepei6@outlook.com;jlichun@nefu.edu.cn
CLC Number:
HE Pei, XIA Wanqi, JIANG Lichun. Stem taper modeling equation for dahurian larch based on nonparametric regression methods[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 184-192.
Table 1
Descriptive statistics for dahurian larch sample trees"
统计量 statistics | 建模数据 fitting data | 检验数据 validation data | ||
---|---|---|---|---|
胸径/cm DBH | 树高/m tree height | 胸径/cm DBH | 树高/m tree height | |
最小值 min. | 5.20 | 5.30 | 5.40 | 5.10 |
最大值 max. | 63.40 | 26.50 | 56.60 | 29.50 |
平均值 mean | 29.83 | 17.41 | 29.47 | 17.46 |
标准差 SD | 13.22 | 5.14 | 13.61 | 5.39 |
变异系数 CV | 44.31 | 29.54 | 46.18 | 30.87 |
Table 2
The fitting results of the nonparametric model based on different spline functions"
模型 models | 均方根误差 RMSE | R2 | 赤池信息量准则 AIC |
---|---|---|---|
(2) | 4.313 2 | 0.897 0 | 14 250.45 |
(3) | 4.316 5 | 0.896 8 | 14 257.98 |
(4) | 4.310 5 | 0.897 1 | 14 244.44 |
(5) | 4.313 9 | 0.897 0 | 14 252.01 |
(6) | 2.169 8 | 0.973 9 | 7 552.07 |
(7) | 2.167 5 | 0.973 9 | 7 541.62 |
(8) | 2.164 2 | 0.974 1 | 7 526.58 |
(9) | 2.161 9 | 0.974 1 | 7 516.15 |
Table 3
Parameter estimates and tests of the Max model"
统计量statistic | b1 | b2 | b3 | b4 | p | q |
---|---|---|---|---|---|---|
估计值 estimate | -3.271 1 | 1.427 1 | -1.325 0 | 124.324 3 | 0.816 8 | 0.079 6 |
标准误差standard error | 0.466 3 | 0.253 7 | 0.250 0 | 5.647 0 | 0.024 1 | 0.001 6 |
t值 t value | -7.015 | 5.623 | -5.298 | 22.016 | 33.839 | 47.565 |
P值 P value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Table 4
Goodness-of-fit statistics of parametric and nonparametric models"
模型 models | 均方根误差 RMSE | R2 | 赤池信息量准则 AIC |
---|---|---|---|
Max | 2.293 6 | 0.970 8 | 8 105.11 |
TP | 2.161 6 | 0.974 1 | 7 516.15 |
DS | 2.160 1 | 0.974 1 | 7 509.20 |
CR | 2.247 5 | 0.972 0 | 7 895.96 |
PS | 2.163 4 | 0.974 0 | 7 524.11 |
GP | 2.161 5 | 0.974 1 | 7 515.67 |
BS | 2.162 5 | 0.974 1 | 7 519.94 |
LO | 2.358 6 | 0.969 2 | 8 366.25 |
Fig.3
Effects of different smoothing curves for nonparametric additive models D2 represents square of diameter at breast height, H represents total tree height, h / H represents square root of reletive tree height. The ‘rug plots’, along the x-axis bottom of each plot, show the values of the covariates of each smooth. s1, s2, s3, s4, s5 and s6 represent smooth splines TP、DS、CR、PS、GP and BS respectively. The number in each y-axis caption is the effective degrees of freedom of the term being plotted. "
Table 5
Fitting statistics of nonparametric additive models"
光滑样条 smooth splines | 参数项 parametric terms | 非参数项 nonparametric terms | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
截距 intercept | 估计值 estimate | 标准差 standard error | t | P | 平滑项 smooth terms | 自由度 df | F | P | ||
0.826 0 | 0.001 1 | 778.1 | <0.001 | 6.317 | 23.260 | <0.001 | ||||
TP | 3.683 | 8.861 | <0.001 | |||||||
8.222 | 9 140.065 | <0.001 | ||||||||
0.826 0 | 0.001 1 | 778.4 | <0.001 | 6.474 | 23.160 | <0.001 | ||||
DS | 3.842 | 9.550 | <0.001 | |||||||
9.903 | 5 313.460 | <0.001 | ||||||||
0.826 0 | 0.001 1 | 737.3 | <0.001 | 5.591 | 23.205 | <0.001 | ||||
CR | 3.775 | 7.351 | <0.001 | |||||||
7.205 | 9 294.653 | <0.001 | ||||||||
0.826 0 | 0.001 0 | 777.8 | <0.001 | 5.082 | 28.020 | <0.001 | ||||
PS | 3.706 | 12.420 | <0.001 | |||||||
7.403 | 10 142.200 | <0.001 | ||||||||
0.826 0 | 0.001 1 | 777.9 | <0.001 | 6.367 | 23.040 | <0.001 | ||||
GP | 3.788 | 8.930 | <0.001 | |||||||
8.331 | 9 015.160 | <0.001 | ||||||||
0.826 0 | 0.001 1 | 778.0 | <0.001 | 5.460 | 26.150 | <0.001 | ||||
BS | 4.002 | 10.450 | <0.001 | |||||||
7.784 | 9 650.210 | <0.001 |
Table 6
Validation for parametric and nonparametric models"
统计量 deviation of statistics | 模型 models | |||||||
---|---|---|---|---|---|---|---|---|
Max | TP | DS | CR | PS | GP | BS | ||
相对百分误差MAPE | 8.974 4 | 8.049 5 | 8.035 5 | 9.113 9 | 8.064 5 | 8.047 7 | 8.060 4 | |
均方根误差RMSE | 2.050 7 | 2.037 2 | 2.037 4 | 2.152 1 | 2.038 3 | 2.038 1 | 2.039 1 | |
均方根误差百分比RMSPE | 1.089 8 | 0.056 7 | 0.051 0 | 0.332 7 | 0.057 1 | 0.054 3 | 0.052 9 |
[1] | KOZAK A. My last words on taper equations[J]. The Forestry Chronicle, 2004,80(4):507-515. DOI: 10.5558/tfc80507-4. |
[2] | KUBLIN E, AUGUSTIN N H, LAPPI J. A flexible regression model for diameter prediction[J]. European Journal of Forest Research, 2008,127(5):415-428. DOI: 10.1007/s10342-008-0225-7. |
[3] | MENÉNDEZ-MIGUÉLEZ M, CANGA E, ÁLVAREZ-ÁLVAREZ P, et al. Stem taper function for sweet chestnut (Castanea sativa Mill.) coppice stands in northwest Spain[J]. Annals of Forest Science, 2014,71(7):761-770. DOI: 10.1007/s13595-014-0372-6. |
[4] |
ARIAS-RODIL M, CASTEDO-DORADO F, CÁMARA-OBREGÓN A, et al. Fitting and calibrating a multilevel mixed-effects stem taper model for maritime pine in NW Spain[J]. PloS one, 2015,10(12):e0143521. DOI: 10.1371/journal.pone.0143521.
pmid: 26630156 |
[5] | SCHRÖDER T, COSTA E A, VALÉRIO A F, et al. Taper equations for Pinus elliottii Engelm. in southern Paraná, Brazil[J]. Forest Science, 2015,61(2):311-319. DOI: 10.5849/forsci.14-054. |
[6] | ROJO A, PERALES X, SÁNCHEZ-RODRÍGUEZ F, et al. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain)[J]. European Journal of Forest Research, 2005,124(3):177-186. DOI: 10.1007/s10342-005-0066-6. |
[7] | CORRAL-RIVAS J J, DIÉGUEZ-ARANDA U, CORRAL RIVAS S, et al. A merchantable volume system for major pine species in El Salto, Durango (Mexico)[J]. Forest Ecology and Management, 2007,238(1/2/3):118-129. DOI: 10.1016/j.foreco.2006.09.074. |
[8] | LI R X, WEISKITTEL A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region[J]. Annals of Forest Science, 2010,67(3):302. DOI: 10.1051/forest/2009109. |
[9] | ÖZCELIK R, KARATEPE Y, GÜRLEVIK N, et al. Development of ecoregion-based merchantable volume systems for Pinus brutia Ten. and Pinus nigra Arnold. in southern Turkey[J]. Journal of Forestry Research, 2016,27(1):101-117. DOI: 10.1007/s11676-015-0147-4. |
[10] | ÖZÇELIK R, CRECENTE-CAMPO F. Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus mountains, southern Turkey[J]. Forest Science, 2016,62(1):78-91. DOI: 10.5849/forsci.14-212. |
[11] | MUHAIRWE C K. Taper equations for Eucalyptus pilularis and Eucalyptus grandis for the north coast in New South Wales, Australia[J]. Forest Ecology and Management, 1999,113(2-3):251-269. DOI: 10.1016/S0378-1127(98)00431-9. |
[12] | GOMAT H Y, DELEPORTE P, MOUKINI R, et al. What factors influence the stem taper of Eucalyptus: growth, environmental conditions, or genetics?[J]. Annals of Forest Science, 2011,68(1):109-120. DOI: 10.1007/s13595-011-0012-3. |
[13] | WIKLUND K, KONÖPKA B, NILSSON L-O. Stem form and growth in Picea abies (L.) Karst, in response to water and mineral nutrient availability[J]. Scandinavian Journal of Forest Research, 1995,10(1/2/3/4):326-332. DOI: 10.1080/02827589509382899. |
[14] | SHARMA M, ODERWALD R G. Dimensionally compatible volume and taper equations[J]. Canadian Journal of Forest Research, 2001,31(5):797-803. DOI: 10.1139/x01-005. |
[15] | LEITES L P, ROBINSON A P. Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework[J]. Forest Science, 2004,50(2):204-212. |
[16] | JIANG L, LIU R. Segmented taper equations with crown ratio and stand density for Dahurian larch (Larix gmelinii) in Northeastern China[J]. Journal of Forestry Research, 2011,22(3):347-352. DOI: 10.1007/s11676-011-0178-4. |
[17] | LEE W-K, BIGING G S, SON Y, et al. Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea[J]. Ecological Research, 2006,21(4):513-525. DOI: 10.1007/s11284-006-0152-3. |
[18] | NIGH G, SMITH W. Effect of climate on lodgepole pine stem taper in British Columbia, Canada[J]. Forestry, 2012,85(5):579-587. DOI: 10.1093/forestry/cps063. |
[19] | ADAMEC Z, DRÁPELA K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship[J]. J For Sci, 2015,61(6):235-243. DOI: 10.17221/14/2015-JFS. |
[20] | WOOD S N. Generalized additive models: an introduction with R [M]. Second edition. Boca Raton: CRC Press, 2017. |
[21] | 余黎, 雷相东, 王雅志 等. 基于广义可加模型的气候对单木胸径生长的影响研究[J]. 北京林业大学学报, 2014,36(5):22-32. |
YU L, LEI X D, WANG Y Z, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014,36(5):22-32. DOI: 10.13332/j.cnki.jbfu.2014.05.007. | |
[22] | MAX T A, BURKHART H E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976,22(3):283-289. |
[23] | BROOKS J R, JIANG L C, CLARK A, III. Compatible stem taper, volume, and weight equations for young longleaf pine plantations in Southwest Georgia[J]. Southern Journal of Applied Forestry, 2007,31(4):187-191. |
[24] | JIANG L C, BROOKS J R. Taper, volume, and weight equations for red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2008,25(3):151-153. |
[25] | ROBINSON A P, LANE S E, THÉRIEN G. Fitting forestry models using generalized additive models: a taper model example[J]. Canadian Journal of Forest Research, 2011,41(10):1909-1916. DOI: 10.1139/X11-095. |
[26] | MUHAIRWE C K. Tree form and taper variation over time for interior lodgepole pine[J]. Canadian Journal of Forest Research, 1994,24(9):1904-1913. DOI: 10.1139/x94-245. |
[27] | KOSKELA L, NUMMI T, WENZEL S, et al. On the analysis of cubic smoothing spline-based stem curve prediction for forest harvesters[J]. Canadian Journal of Forest Research, 2006,36(11):2909-2919. DOI: 10.1139/x06-165. |
[1] | ZHAO Jinman, HAN Xinyue, CHENG Ruiming, ZHANG Zhidong. Health assessment of Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in Saihanba Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 199-206. |
[2] | HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin. Effect of stand density on radial growth-climate relationship of Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 182-190. |
[3] | ZUO Zhuang, ZHANG Yun, CUI Xiaoyang. Early effects of fire on soil nitrogen content and form in Larix gmelinii forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 147-154. |
[4] | LU Wenyan, DONG Lingbo, TIAN Yuan, WANG Shashan, QU Xuanyi, WEI Wei, LIU Zhaogang. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 157-165. |
[5] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[6] | ZHAO Kaige, ZHOU Zhenghu, JIN Ying, WANG Chuankuan. Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 177-184. |
[7] | NIE Luyi, DONG Lihu, LI Fengri, MIAO Zheng, XIE Longfei. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 194-202. |
[8] | XIE Lihong, HUANG Qingyang, CAO Hongjie, YANG Fan, WANG Jifeng, NI Hongwei. Effects of climate warming on radial growth of Larix gmelinii in Wudalianchi, Heilongjiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 150-158. |
[9] | WANG Junjie, JIANG Lichun. Predicting crown width for Larix gmelinii based on linear quantiles groups [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 161-170. |
[10] | WANG Bing, ZHANG Pengjie, ZHANG Qiuliang. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 15-24. |
[11] | XIN Shidong, HEI Pei, JIANG Lichun. Effects of different calibration positions on prediction precision of quantile taper function for Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 182-188. |
[12] | ZHOU Sihan, ZHANG Yun, CUI Xiaoyang. Temporal and spatial dynamics of soil available potassium in a post-fire Larix gmelinii forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 141-147. |
[13] | WEI Yulong, ZHANG Qiuliang. Forest edge renewal of Larix gmelinii and its response to the environment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 165-172. |
[14] | GUAN Huiwen, DONG Xibin, ZHANG Tian, QU Hangfeng, WANG Zhiyong, RUAN Jiafu. Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 68-76. |
[15] | PANG Lifeng,JIA Hongyan,LU Yuanchang,FU Liyong. Equations describing stem profiles for several precious tropical tree species [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 93-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||