Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal.) Iljinskaja leaves

YUE Xiliang, QIN Jian, FU Xiangxiang, SHANG Xulan, FANG Shengzuo

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2) : 35-42.

PDF(2165 KB)
PDF(2165 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2) : 35-42. DOI: 10.3969/j.issn.1000-2006.201904048

Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal.) Iljinskaja leaves

Author information +
History +

Abstract

【Objective】 Cyclocarya paliurus (Batal.) Iljinskaja, a native species of China, is cultivated for its medicinal properties,fine timber and ornamental value. To form a theoretical framework of nitrogen fertilization management, this study investigated how variable levels of nitrogen influence the growth, accumulation of secondary metabolites and antioxidant capacity of C. paliurus (Batal.) Iljinskaja seedlings.【Method】The temperature and humidity were fixed in the artificial climate chamber, the stumping seedlings of C. paliurus (Batal.) Iljinskaja with two-year-old seedlings were treated by three nitrogen application levels as N1 (0 g/plant), N2 (3 g/plant) and N3 (6 g/plant). And then, the corresponding growth, total carbon, total nitrogen, secondary metabolites and antioxidant capacity of C. paliurus (Batal.) Iljinskaja leaves were measured and compared across treatments by single factor analysis of variance. 【Result】The seedlings height, ground diameter, biomass and secondary metabolite content of C. paliurus (Batal.) Iljinskaja leaves changed significantly across treatments (P < 0.05). With the increase in nitrogen level, the seedlings height, ground diameter and biomass variation of C. paliurus (Batal.) Iljinskaja were 27.33-39.67 cm, 6.65-9.19 mm, and 2.41-3.87 g, respectively; all the highest values were detected with N1 treatment. The highest content of secondary metabolites was observed in N0 treatment. However, the total nitrogen content in seedlings leaves increased with the nitrogen level, and the C/N ratio significantly decreased. In addition, there was a significant negative correlation between the total nitrogen content and C/N ratio in the leaves of C. paliurus (Batal.) Iljinskaja(P < 0.01), as well as between the IC 50 values of ABTS[2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate)] and DPPH(1,1-diphenyl-2-picrylhydrazyl) and the contents of total triterpenoids, total flavonoids, and total polyphenols in the leaves ofC. paliurus (Batal.) Iljinskaja(P < 0.05). With increasing nitrogen level, both the secondary metabolite contents measured and their antioxidant capacities in C. paliurus (Batal.) Iljinskaja leaves showed the tendency N0 > N2 > N1. 【Conclusion】The difference in nitrogen level significantly changed the growth, C/N ratio, secondary metabolites accumulation and antioxidant capacity of C. paliurus (Batal.) Iljinskaja seedlings. The C/N ratio had a significant positive correlation with total polyphenols, and no correlation with total flavonoids, total triterpenoids and antioxidant capacity. Both low and high nitrogen treatments contributed to the accumulation of secondary metabolites and an improvement in the antioxidant capacity ofC. paliurus (Batal.) Iljinskaja seedlings, but inhibited the growth of C. paliurus (Batal.) Iljinskaja seedlings. In conclusion, these results provide the theoretical basis for nitrogen fertilization management through C. paliurus (Batal.) Iljinskaja cultivation.

Key words

Cyclocarya paliurus (Batal.) Iljinskaja / nitrogen fertilization / secondary metabolites: antioxidant capacity / growth / total carbon / total nitrogen

Cite this article

Download Citations
YUE Xiliang , QIN Jian , FU Xiangxiang , et al . Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal.) Iljinskaja leaves[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(2): 35-42 https://doi.org/10.3969/j.issn.1000-2006.201904048

References

[1]
CIRCU M L, AW T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Biology and Medicine, 2010, 48(6):749-762. DOI: 10.1016/j.freeradbiomed.2009.12.022.
[2]
PIETTA P G. Flavonoids as antioxidants[J]. Journal of Natural Products, 2000, 63(7):1035-1042. DOI: 10.1021/np9904509.
[3]
XIE P J, HUANG L X, ZHANG C H, et al. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure-activity relationships[J]. Journal of Functional Foods, 2015, 16:460-471. DOI: 10.1016/j.jff.2015.05.005.
[4]
盛雪飞, 彭燕, 陈健初. 天然抗氧化剂之间的协同作用研究进展[J]. 食品工业科技, 2010,31(7):414-417, 421.
SHENG X F, PENG Y, CHEN J C. Research progress in synergistic effect between natural antioxidants[J]. Science and Technology of Food Industry, 2010,31(7):414-417. DOI: 10.13386/j.issn1002-0306.2010.07.087.
[5]
ABRAHIM N N, ABDUL-RAHMAN P S, AMINUDIN N. The antioxidant activities, cytotoxic properties, and identification of water-soluble compounds of Ficus deltoidea leaves[J]. Peer J, 2018, 6:e5694. DOI: 10.7717/peerj.5694.
[6]
马锐, 吴胜本. 中药黄酮类化合物药理作用及作用机制研究进展[J]. 中国药物警戒, 2013,10(5):286-290.
MA R, WU S B. Research progress about pharmacological effect and mechanism of flavonoids in traditional Chinese medicine[J]. Chinese Journal of Pharmacovigilance, 2013,10(5):286-290. DOI: 10.3969/j.issn. 1672-8629.2013.05.008.
[7]
LIEW S S, HO W Y, YEAP S K, et al. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts[J]. Peer J, 2018, 6:e5331. DOI: 10.7717/peerj.5331.
[8]
QIAO A M, WANG Y H, XIANG L M, et al. Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity[J]. Fitoterapia, 2014, 98:137-142. DOI: 10.1016/ j.fitote.2014.07. 020.
[9]
DENG B, FANG S, SHANG X L, et al. Influence of genotypes and environmental factors on leaf triterpenoid content and growth of Cyclocarya paliurus[J]. Journal of Forestry Research, 2019, 30(3):789-798. DOI: 10.1007/s11676-018-0680-z.
[10]
FANG S, YANG W X, CHU X L, et al. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus[J]. Food Chemistry, 2011, 124(4):1382-1386. DOI: 10.1016/j.foodchem.2010.07.095.
[11]
尹忠平, 上官新晨, 黎冬明, 等. 超声辅助提取青钱柳叶总三萜化合物研究[J]. 江西农业大学学报, 2010,32(2):373-377.
YIN Z P, SHANGGUAN X C, LI D M, et al. A study on ultrasonic-assisted extraction of total triterpenoids from Cyclocarya paliurus leaves [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2010,32(2):373-377. DOI: 10.3969/j.issn.1000-2286.2010.02.034.
[12]
苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系[J]. 中草药, 2005,36(9):1415-1418.
SU W H, ZHANG G F, LI X H, et al. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition[J]. Chinese Traditional and Herbal Drugs, 2005,36(9):1415-1418. DOI: 10.3321/j.issn:0253-2670.2005.09.052.
[13]
PEÑUELAS J, LLUSIÀ J. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis[J]. Journal of Chemical Ecology, 1997, 23(4):979-993. DOI: 10.1023/b:joe.0000006383.29650.d7.
[14]
SHELTON A. Variable chemical defences in plants and their effects on herbivore behaviour[J]. Evolutionary Ecology Research, 2000, 2(2):231-249. DOI: 10.1111/j.0014-3820.2000.tb00034.x
[15]
STAMP N. Out of the quagmire of plant defense hypotheses[J]. The Quarterly Review of Biology, 2003, 78(1):23-55.DOI: 10.1086/367580.
[16]
AINSWORTH E A, LONG S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynjournal, canopy properties and plant production to rising CO2[J]. New Phytologist, 2004, 165(2):351-372. DOI: 10.1111/j.1469-8137.2004.01224.x.
[17]
LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2):371-379. DOI: 10.1890/06-2057.1.
[18]
刘盈盈, 张珍明, 任春光, 等. 施肥对青钱柳幼苗生长及叶片快速光响应与糖含量的影响[J]. 西南农业学报, 2016,29(10):2361-2365.
LIU Y Y, ZHANG Z M, REN C G, et al. Effects of fertilization on seedling growth and rapid light-response and sugar content of Cyclocarya paliurus [J]. Southwest China Journal of Agricultural Sciences, 2016,29(10):2361-2365. DOI: 10.16213/j.cnki.scjas.2016.10.020.
[19]
李富民, 谭杰, 聂少平, 等. 青钱柳总黄酮测定方法研究[J]. 江西食品工业, 2006(4):34-37.
LI F M, TAN J, NIE S P, et al. The study on determination methods of total flavonoids in Cyclocarya paliurus [J]. Jiangxi Food Industry, 2006(4):34-37. DOI: 10.3969/j.issn.1674-2435.2006.04.009.
[20]
FAN J P, HE C H. Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high performance liquid chromatography method[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(3):950-956. DOI: 10.1016/j.jpba.2006.01.044.
[21]
ALOTHMAN M, BHAT R, KARIM A A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents[J]. Food Chemistry, 2009, 115(3):785-788. DOI: 10.1016/j.foodchem.2008.12.005.
[22]
XIA X, CAO J G, ZHENG Y X, et al. Flavonoid concentrations and bioactivity of flavonoid extracts from 19 species of ferns from China[J]. Industrial Crops and Products, 2014, 58:91-98. DOI: 10.1016/j.indcrop. 2014.04.005.
[23]
XU Y, WANG G B, CAO F L, et al. Light intensity affects the growth and flavonol biosynjournal of Ginkgo (Ginkgo biloba L.)[J]. New Forests, 2014, 45(6):765-776. DOI: 10.1007/s11056-014-9435-7.
[24]
COHEN S D, TARARA J M, GAMBETTA G A, et al. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes[J]. Journal of Experimental Botany, 2012, 63(7):2655-2665.DOI: 10.1093/jxb/err449.
[25]
BALLIZANY W L, HOFMANN R W, JAHUFER M Z Z, et al. Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought[J]. Functional Plant Biology, 2012, 39(2):167.DOI: 10.1071/fp11193.
[26]
DENG B, LI Y Y, LEI G, et al. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus[J]. Plant Physiology and Biochemistry, 2019, 135:111-118.DOI: 10.1016/j.plaphy.2018.12.001.
[27]
DEL MAR RUBIO-WILHELMI, SANCHEZ-RODRIGUEZ E, LEYVA R, et al. Response of carbon and nitrogen-rich metabolites to nitrogen deficiency in PSARK∷IPT tobacco plants[J]. Plant Physiology and Biochemistry, 2012, 57:231-237. DOI: 10.1016/j.plaphy.2012.06.004.
[28]
STEWART A J, CHAPMAN W, JENKINS G I, et al. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues[J]. Plant, Cell and Environment, 2001, 24(11):1189-1197. DOI: 10.1046/j.1365-3040.2001.00768.x.
[29]
LARBAT R, LE BOT J, BOURGAUD F, et al. Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation[J]. Plant Biology, 2012, 14(5):760-769. DOI: 10.1111/j.1438-8677. 2012.00564.x.
[30]
KOVACIK J, KLEJDUS B, BACKOR M, et al. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes[J]. Plant Science, 2007, 172(2):393-399. DOI: 10.1016/j.plantsci.2006.10.001.
[31]
LI R R, LU Y, WAN F X, et al. Impacts of a high nitrogen load on foliar nutrient status, N metabolism, and photosynthetic capacity in a Cupressus lusitanica mill. plantation[J]. Forests, 2018, 9(8):483. DOI: 10.3390/f9080483.
[32]
LUO Z B, CALFAPIETRA C, SCARASCIA-MUGNOZZA G, et al. Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under free air CO2 enrichment (FACE) and nitrogen fertilisation[J]. Plant and Soil, 2008, 304(1/2):45-57. DOI: 10.1007/s11104-007-9518-8.
[33]
胡佳栋, 毛歌, 张志伟, 等. 不同施肥处理对党参产量和次生代谢物含量的影响研究[J]. 中国中药杂志, 2017,42(15):2946-2953.
HU J D, MAO G, ZHANG Z W, et al. Effect of different fertilization treatments on yield and secondary metabolites of Codonopsis pilosula [J]. China Journal of Chinese Materia Medica. 2017,42(15):2946-2953. DOI: 10.19540/j.cnki.cjcmm.20170714.009.
[34]
FAHEY J W. Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties: part 1[J]. Trees for Life Journal, 2005:1-15. DOI: 10.1201/9781420039078.ch12.
[35]
ZHOU M M, LIN Y, FANG S, et al. Phytochemical content and antioxidant activity in aqueous extracts of Cyclocarya paliurus leaves collected from different populations[J]. PeerJ, 2019, 7:e6942. DOI: 10.7717/peerj.6492.
[36]
IBRAHIM M H, JAAFAR H Z E. The relationship of nitrogen and C/N ratio with secondary metabolites levels and antioxidant activities in three varieties of Malaysian Kacip Fatimah (Labisia pumila blume)[J]. Molecules, 2011, 16(7):5514-5526. DOI: 10.3390/molecules1607514.
[37]
GUILLÉN-ROMÁN C J, GUEVARA-GONZÁLEZ R G, ROCHA-GUZMÁN N E, et al. Effect of nitrogen privation on the phenolics contents, antioxidant and antibacterial activities in Moringa oleifera leaves[J]. Industrial Crops and Products, 2018, 114:45-51. DOI: 10.1016/j.indcrop.2018.01.048.
[38]
IBRAHIM M H, JAAFAR H Z E, RAHMAT A, et al. The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization[J]. Molecules, 2010, 16(1):162-174. DOI: 10.3390/molecules16010162.
[39]
ZHANG J X, LIANG Z N, JIAO D M, et al. Different water and nitrogen fertilizer rates effects on growth and development of spinach[J]. Communications in Soil Science and Plant Analysis, 2018, 49(15):1922-1933. DOI: 10.1080/00103624.2018.1492596.
[40]
LILLO C, LEA U S, RUOFF P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway[J]. Plant, Cell & Environment, 2008, 31(5):587-601. DOI: 10.1111/j.1365-3040.2007.01748.x.

RIGHTS & PERMISSIONS

Copyright reserved © 2020
PDF(2165 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/