The progress in plant pattern recognition receptor FLS2

XIAO Hongju, CHENG Qiang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2) : 220-226.

PDF(2844 KB)
PDF(2844 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2) : 220-226. DOI: 10.3969/j.issn.1000-2006.201904056

The progress in plant pattern recognition receptor FLS2

Author information +
History +

Abstract

Plants rely on pattern recognition receptors (PRRs) to perceive conserved signatures of pathogenic microorganisms. This recognition triggers the first layer of immunity, which consists of non-host resistance against various microorganisms and generates basal resistance. Arabidopsis FLS2 is the first PRR identified in plants that recognizes bacterial flagellin. A large number of studies on FLS2 provide examples and basis for future studies of other PRRs, and they promote the establishment and development of the plant immune theory. In the present study, we reviewed the discovery and naming process of FLS2, its structure and function, the process of activation, related components, mechanism of regulation, interaction with effectors, and phylogeny in angiosperms. We also analyzed the technical problems in protein contamination and C-terminal tags accompanying FLS2 research, and we introduced the prospect of breeding plants with broad-spectrum and durable resistance to disease by genetic transformation with plant pattern recognition receptor genes.

Key words

plant pattern recognition receptor / plant immune system / FLS2 / regulation

Cite this article

Download Citations
XIAO Hongju , CHENG Qiang. The progress in plant pattern recognition receptor FLS2[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(2): 220-226 https://doi.org/10.3969/j.issn.1000-2006.201904056

References

[1]
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.DOI: 10.1038/nature05286.
[2]
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4):803-814.DOI: 10.1016/j.cell.2006.02.008.
[3]
O’NEILL L A J, GOLENBOCK D, BOWIE A G. The history of Toll-like receptors:redefining innate immunity[J]. Nat Rev Immunol, 2013, 13(6):453-460.DOI: 10.1038/nri3446.
[4]
FELIX G, DURAN J D, VOLKO S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. Plant J, 1999, 18(3):265-276.DOI: 10.1046/j.1365-313x.1999.00265.x.
[5]
GÓMEZ-GÓMEZ L, FELIX G, BOLLER T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana[J]. Plant J, 1999, 18(3):277-284.DOI: 10.1046/j.1365-313x.1999.00451.x.
[6]
GÓMEZ-GÓMEZ L, BOLLER T. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Mol Cell, 2000, 5(6):1003-1011.DOI: 10.1016/s1097-2765(00)80265-8.
[7]
GÓMEZ-GÓMEZ L, BOLLER T. Flagellin perception:a paradigm for innate immunity[J]. Trends Plant Sci, 2002, 7(6):251-256.DOI: 10.1016/s1360-1385(02)02261-6.
[8]
CHINCHILLA D, BAUER Z, REGENASS M, et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476.DOI: 10.1105/tpc.105.036574.
[9]
DUNNING F M, SUN W X, JANSEN K L, et al. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception[J]. Plant Cell, 2007, 19(10):3297-3313.DOI: 10.1105/tpc.106.048801.
[10]
MUELLER K, BITTEL P, CHINCHILLA D, et al. Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato[J]. Plant Cell, 2012, 24(5):2213-2224.DOI: 10.1105/tpc.112.096073.
[11]
SUN Y, LI L, MACHO A P, et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158):624-628.DOI: 10.1126/science.1243825.
[12]
LI J, WEN J Q, LEASE K A, et al. BAK1,an Arabidopsis LRR receptor-like protein kinase,interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2):213-222.DOI: 10.1016/S0092-8674(02)00812-7.
[13]
CHINCHILLA D, ZIPFEL C, ROBATZEK S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448(7152):497-500.DOI: 10.1038/nature05999.
[14]
HEESE A, HANN D R, GIMENEZ-IBANEZ S, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants[J]. Proc Natl Acad Sci U S A, 2007, 104(29):12217-12222.DOI: 10.1073/pnas.0705306104.
[15]
SAUR I M L, KADOTA Y, SKLENAR J, et al. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana[J]. Proc Natl Acad Sci USA, 2016, 113(12):3389-3394.DOI: 10.1073/pnas.1511847113.
[16]
ALBERT I, BÖHM H, ALBERT M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nat Plants, 2015, 1(10):15140.DOI: 10.1038/nplants.2015.140.
[17]
LADWIG F, DAHLKE R I, STÜHRWOHLDT N, et al. Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17,h+-ATPase,and BAK1[J]. Plant Cell, 2015, 27(6):1718-1729.DOI: 10.1105/tpc.15.00306.
[18]
YEH Y H, PANZERI D, KADOTA Y, et al. The Arabidopsis malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-independent pattern-triggered immunity[J]. Plant Cell, 2016:tpc.00313.2016.DOI: 10.1105/tpc.16.00313.
[19]
STEGMANN M, MONAGHAN J, SMAKOWSKA-LUZAN E, et al. The receptor kinase Fer is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322):287-289.DOI: 10.1126/science.aal2541.
[20]
SMAKOWSKA-LUZAN E, MOTT G A, PARYS K, et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases[J]. Nature, 2018, 553(7688):342-346.DOI: 10.1038/nature25184.
[21]
LU D, WU S, GAO X, et al. A receptor-like cytoplasmic kinase,BIK1,associates with a flagellin receptor complex to initiate plant innate immunity[J]. Proc Natl Acad Sci U S A, 2010, 107(1):496-501.DOI: 10.1073/pnas.0909705107.
[22]
KADOTA Y, SKLENAR J, DERBYSHIRE P, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Mol Cell, 2014, 54(1):43-55.DOI: 10.1016/j.molcel.2014.02.021.
[23]
LIANG X X, MA M M, ZHOU Z Y, et al. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases[J]. Cell Res, 2018, 28(5):529-543.DOI: 10.1038/s41422-018-0027-5.
[24]
ZHONG C L, ZHANG C, LIU J Z. Heterotrimeric G protein signaling in plant immunity[J]. J Exp Bot, 2019, 70(4):1109-1118.DOI: 10.1093/jxb/ery426.
[25]
BI G Z, ZHOU Z Y, WANG W B, et al. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis[J]. Plant Cell, 2018, 30(7):1543-1561.DOI: 10.1105/tpc.17.00981.
[26]
COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nat Rev Immunol, 2016, 16(9):537-552.DOI: 10.1038/nri.2016.77.
[27]
IMKAMPE J, HALTER T, HUANG S H, et al. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1[J]. Plant Cell, 2017, 29(9):2285-2303.DOI: 10.1105/tpc.17.00376.
[28]
SEGONZAC C, MACHO A P, SANMARTÍN M, et al. Negative control of BAK 1 by protein phosphatase 2A during plant innate immunity[J]. EMBO J, 2014, 33(18):2069-2079.DOI: 10.15252/embj.201488698.
[29]
LU D, LIN W, GAO X, et al. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity[J]. Science, 2011, 332(6036):1439-1442.DOI: 10.1126/science.1204903.
[30]
MBENGUE M, BOURDAIS G, GERVASI F, et al. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases[J]. Proc Natl Acad Sci USA, 2016, 113(39):11034-11039.DOI: 10.1073/pnas.1606004113.
[31]
ROBATZEK S, BITTEL P, CHINCHILLA D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2,an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Mol Biol, 2007, 64(5):539-547.DOI: 10.1007/s11103-007-9173-8.
[32]
TRDÁ L, FERNANDEZ O, BOUTROT F, et al. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacteriumBurkholderia phytofirmansand plant pathogenic bacteria[J]. New Phytol, 2014, 201(4):1371-1384.DOI: 10.1111/nph.12592.
[33]
SHI Q C, FEBRES V J, JONES J B, et al. A survey of FLS2 genes from multiple Citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp.citri[J]. Hortic Res, 2016, 3:16022.DOI: 10.1038/hortres.2016.22.
[34]
TAKAI R, ISOGAI A, TAKAYAMA S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Mol Plant-Microbe Interactions, 2008, 21(12):1635-1642.DOI: 10.1094/mpmi-21-12-1635.
[35]
XIANG T T, ZONG N, ZOU Y, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases[J]. Curr Biol, 2008, 18(1):74-80.DOI: 10.1016/j.cub.2007.12.020.
[36]
GÖHRE V, SPALLEK T, HÄWEKER H, et al. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB[J]. Curr Biol, 2008, 18(23):1824-1832.DOI: 10.1016/j.cub.2008.10.063.
[37]
LI L, KIM P, YU L P, et al. Activation-dependent destruction of a Co-receptor by a Pseudomonas syringae effector dampens plant immunity[J]. Cell Host Microbe, 2016, 20(4):504-514.DOI: 10.1016/j.chom.2016.09.007.
[38]
ZHOU J G, WU S J, CHEN X, et al. The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1[J]. Plant J, 2014, 77(2):235-245.DOI: 10.1111/tpj.12381.
[39]
ZHANG J, LI W, XIANG T T, et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host Microbe, 2010, 7(4):290-301.DOI: 10.1016/j.chom.2010.03.007.
[40]
FENG, YANG F, RONG W, et al. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases[J]. Nature, 2012, 485(7396):114-118.DOI: 10.1038/nature10962.
[41]
ZHENG X Z, MCLELLAN H, FRAITURE M, et al. Functionally redundant RXLR effectors fromPhytophthora infestans act at different steps to suppress early flg22-triggered immunity[J]. PLoS Pathog, 2014, 10(4):e1004057.DOI: 10.1371/journal.ppat.1004057.
[42]
GARCIA A V, CHARRIER A, SCHIKORA A, et al. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(4):657-674.DOI: 10.1093/mp/sst145.
[43]
LEE H, CHAH O K, SHEEN J. Stem-cell-triggered immunity through CLV3p-FLS2 signalling[J]. Nature, 2011, 473(7347):376-379.DOI: 10.1038/nature09958.
[44]
DANNA C H, MILLET Y A, KOLLER T, et al. The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides[J]. Proc Natl Acad Sci U S A, 2011, 108(22):9286-9291.DOI: 10.1073/pnas.1106366108.
[45]
GEWIN V. Rice researchers redress retraction[J]. Nature, 2015 DOI: 10.1038/nature.2015.18055.
[46]
MUELLER K, CHINCHILLA D, ALBERT M, et al. Contamination risks in work with synthetic peptides:flg22 as an example of a pirate in commercial peptide preparations[J]. Plant Cell, 2012, 24(8):3193-3197.DOI: 10.1105/tpc.111.093815.
[47]
HURST C H, TURNBULL D, MYLES S M, et al. Variable effects of C-terminal fusions on FLS2 function:not all epitope tags are created equal[J]. Plant Physiol, 2018, 177(2):522-531.DOI: 10.1104/pp.17.01700.
[48]
HAO G X, PITINO M, DUAN Y P, et al. Reduced susceptibility to Xanthomonas citri in transgenic Citrus expressing the FLS2 receptor From Nicotiana benthamiana[J]. Mol Plant-Microbe Interactions, 2016, 29(2):132-142.DOI: 10.1094/mpmi-09-15-0211-r.
[49]
LACOMBE S, ROUGON-CARDOSO A, SHERWOOD E, et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance[J]. Nat Biotechnol, 2010, 28(4):365-369.DOI: 10.1038/nbt.1613.

RIGHTS & PERMISSIONS

Copyright reserved © 2020
PDF(2844 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/