An analysis of seed traits and endogenous hormone levels after seed soakings in Camellia oleifera

LONG Wei, YAO Xiaohua, LYU Leyan, WANG Kailiang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (5) : 148-156.

PDF(1777 KB)
PDF(1777 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (5) : 148-156. DOI: 10.3969/j.issn.1000-2006.201905021

An analysis of seed traits and endogenous hormone levels after seed soakings in Camellia oleifera

Author information +
History +

Abstract

【Objective】This study investigated the seed characters of Camellia oleifera and analyzed the changes in water absorption and the absorption rate to explore changes in endogenous hormones during seed soaking and to provide a technical support for standardized rootstock cultivation. 【Method】Seeds of C. oleifera cultivars: ‘Changlin 3’, ‘Changlin 4’, ‘Changlin 18’, ‘Changlin 40’ and ‘Changlin 53’ were used in experiments to determine seed shape parameters and volume. In an artificial climate chamber with the fixed temperature and humidity, the water absorption and absorption rate at different times during seed soaking were determined for all the cultivars. In a separate experiment, Changlin 18 was subjected to seed soaking at different times and temperatures and the concentrations of gibberellin (GA3), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA) were determined using LC-MS and compared by one-way ANOVA. 【Result】The seed volume was in the order as follows: Changlin 53, 40, 18, 3 and 4. Changlin 53 showed a significant variance in relation to the other cultivars. The three-dimensional coefficients of the seeds indicated that they were mostly flat for Changlin 3, 4 and 40 and nearly spherical for Changlin 18 and 53, which were significantly correlated with the transverse diameter length of the seeds. The seed volume of Changlin 3 and 4 was significantly or very significantly positively correlated with longitudinal and transverse diameters and there was a significant negative correlation with the cross diameter and seed volume between Changlin 40 and 53. There was significantly correlated with the seed volume between Changlin 40 and 53. The water absorption and absorption rate of each cultivar gradually stabilized after 48 h of seed soaking. Water absorption by Changlin 53 seeds was the highest than by Changlin 40 seeds, the lowest during 0-21 h of seed soaking. From 21-48 h of seed soaking, water absorption was in the order: Changlin 4, 3, 53, 40 and 18. The water absorption rate of Changlin 40, 4, 3, 53 and 18 was highest values within 10 h. There was no significant difference between cultivars in the germination rate (P < 0.01 and P< 0.05) after seed soaking, and the order was: Changlin 4, 40, 53, 3 and 18. The concentration of GA3 increased gradually after seed soaking in Changlin 18 and reached its highest value (0.39 mg/kg) in 2 d. The highest values for SA and JA were 0.058 and 1.77 mg/kg, respectively, reached in 4 d. There were the highest values with 0.050 mg/kg in 2 and 5 d, while there were the lowest values with 0.014 mg/kg in 4 d. During seed soaking, a continuously high m(GA3)/m(ABA) level was noted in 1 d and 4 d. The highest value for m(GA3)/m(JA) were reached in 1 d and the lowest values in 4 d. The value for m(GA3 + SA)/m(ABA + JA) decreased with an increase in seed soaking time. The soaking temperature for Changlin 18 was optimal from 25-30 ℃, and had a significant effect on improving the concentration of endogenous hormones. 【Conclusion】The shape of seeds of C. oleifera cultivars was significantly affected by the transverse diameter. There was high uniformity in seeds of Changlin 18 which were stable in the water absorption and absorption rate. The water absorption and absorption rate reached stability after 48 h during seed soaking, which promoted high hormone concentrations for the germination of seeds. The seed soaking temperature was optimal for seed germination under 30 ℃. The results provide a theoretical basis for the standardized cultivation of C. oleifera rootstock.

Key words

Camellia oleifera / seed character / seed soaking / endogenous hormones

Cite this article

Download Citations
LONG Wei , YAO Xiaohua , LYU Leyan , et al. An analysis of seed traits and endogenous hormone levels after seed soakings in Camellia oleifera[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(5): 148-156 https://doi.org/10.3969/j.issn.1000-2006.201905021

References

[1]
庄瑞林 . 中国油茶[M]. 北京: 中国林业出版社, 2008.
[2]
庄瑞林 . 我国油茶良种选育工作的历史回顾与展望[J]. 林业科技开发, 2010,24(6):1-5.
ZHUANG R L . An historical perspective of improved varieties breeding in Camellia oleifera of China[J]. China Forestry Science and Technology, 2010,24(6):1-5.
[3]
杨小环, 王玉国, 杨文秀 , 等. 种子引发对水分胁迫下大豆幼苗生理特性的影响[J]. 中国生态农业学报, 2009,17(6):1191-1195.
YANG X H, WANG Y G, YANG W X , et al. Effect of seed priming on physiological characteristics of soybean seedling under water stress[J]. Chinese Journal of Eco-Agriculture, 2009,17(6):1191-1195. DOI: CNKI:SUN:ZGTN.0.2009-06-029.
The effects of seed priming on seed membrane permeability, soluble protein content, seed germination index and seedling physiological properties of two soybean varieties (weak drought-resistant variety “Jindou 19” and strong drought-resistant variety “Jinda 53” ) under water stress were analyzed. Results indicate that seed membrane permeability of the two varieties significantly decreases while soluble protein content increases significantly under seed priming. Meanwhile, the germination potential, germination rate, germination index and vigor index increase to some degree. When seedlings are under severe water stress (6~9h), compared with the treatments without seed priming, priming makes the seedling membrane permeability and MDA content of the two varieties significantly decrease, while makes SOD and POD activities, proline and soluble protein contents increase. This implies that seed priming improves drought tolerance of soybean seedling by increasing protective enzyme activity, proline and soluble protein contents. Furthermore, the study shows that seed priming exhibits more obvious drought-resistance-increasing effect on the weak drought-resistant variety (“Jindou 19”) than on the strong drought-resistant variety (“Jinda 53”).
[4]
刘慧霞, 王彦荣 . 水引发对紫花苜蓿种子萌发及其生理活动的影响[J]. 草业学报, 2008,17(4):78-84.
LIU H X, WANG Y R . Effect of hydro-priming on seed germination and physiological activities in Medicago sativa[J]. Acta Prataculturae Sinica, 2008,17(4):78-84. DOI: 10.3321/j.issn:1004-5759.2008.04.011.
[5]
程瑶, 方向文, 蒋志荣 , 等. 温水浸种对蒙古黄芪种子萌发特性的影响[J]. 植物科学学报, 2017,35(3) : 413-420.
CHENG Y, FANG X W, JIANG Z R , et al. Effect of warm water treatment on seed germination characteristics of Astragalus membranaceus var. mongholicus[J]. Plant Science Journal, 2017,35(3) : 413-420. DOI: 10.11913/PSJ.2095-0837.2017.30413.
[6]
张曼, 戴蓉, 张顺凯 , 等. H2O2浸种对油菜种子低温萌发的缓解效应[J]. 南京农业大学学报, 2017,40(6):963-970.
ZHANG M, DAI R, ZHANG S K , et al. Alleviation effects of seed soaking with H2O2 on seed germination in rape under low temperature stress[J]. Journal of Nanjing Agricultural University, 2017,40(6) : 963-970. DOI: 10.7685/jnau.201702029.
[7]
杨光华, 曾蕾, 王学林 , 等. 浸种及损伤对甜瓜种子发芽的影响[J]. 热带农业科学, 2017,37(11):22-26.
YANG G H, ZENG L, WANG X L , et al. Effect of seed soaking and damage on melon seeds germination[J]. Chinese Journal of Tropical Agriculture, 2017,37(11):22-26. DOI: 10. 12008/j. issn. 1009-2196.2017.11.005.
[8]
王红俊, 陈志飞, 张莹 , 等. 浸种时间和浸种剂对草地早熟禾种子发芽的影响[J]. 草业科学, 2014,31(11):2095-2104.
WANG H J, CHEN Z F, ZHANG Y , et al. Influence of soaking times and agents on the seeds germination of Poa pratensis[J]. Pratacultural Sicence, 2014,31(11):2095-2104. DOI: 10.11829/j.issn.1001-0629.2014-0020.
[9]
潘彬荣, 任镜羽, 赵光武 . 浸种处理对甜玉米种子萌发及活力的影响[J]. 浙江农林大学学报, 2015,32(1):47-51.
PAN B R, REN J Y, ZHAO G W . Germination and vigor of sweet corn seeds with seed soaking time[J]. Journal of Zhejiang A & F University, 2015,32(1):47-51. DOI: 10.11833 /j.issn.2095-0756.2015.01.007.
[10]
郑福超, 耿兴敏, 胡义红 , 等. 温度及浸种对杜鹃种子萌发特性的影响[J]. 福建林业科技, 2016,43(4):125-129.
ZHENG F C, GENG X M, HU Y H , et al. Effects of temperature and soaking treatment on germination characteristics of rhodedendron seeds[J]. Journal of Fujian Forestry Science and Technology, 2016,43(4):125-129. DOI: 10.13428/ j. cnki. fjlk. 2016. 04.027.
[11]
刘建霞, 张晓丹, 王润梅 , 等. 6-BA浸种对盐胁迫下绿豆萌发及幼苗生理特性的影响[J]. 作物杂志, 2018(1):166-172.
LIU J X, ZHANG X D, WANG R M , et al. Effects of seed soaking with 6-BA on germination and physiological characteristics of mung bean under salt stress[J]. Crops, 2018(1):166-172. DOI: 10.16035/j.issn.1001-7283.2018.01.027.
[12]
肖生旺, 方向文, 蒋志荣 , 等. 温水浸种和IAA溶液浸种对当归种子萌发特性的影响[J]. 生态学杂志, 2017,36(5):1265-1270.
XIAO S W, FANG X W, JIANG Z R , et al. Effects of warm water soaking and IAA soaking on germination of Angelica sinensis seeds[J]. Chinese Journal of Ecology, 2017,36(5):1265-1270. DOI: 10.13292/j. 1000-4890.201705.006.
[13]
刘丽琴, 张永清, 李鑫 , 等. 烯效唑浸种对干旱胁迫下红小豆生长及其根系生理特性的影响[J]. 西北植物学报, 2017,37(1):144-153.
LIU L Q, ZHANG Y Q, LI X , et al. Influence of seed soaking with uniconazole on growth and root physiological characteristics of adzuki bean under frought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(1):144-153. DOI: 10.7606/j.issn.1000-4025.2017.01.0144.
[14]
江胜国, 钱侯春, 张斗胜 , 等. 桐城市油茶气候品质评价模型构建方法探讨[J]. 森林工程, 2018,34(5):39-46.
JIANG S G, QIAN H C, ZHANG D S , et al. Discussion on construction method of climate quality evaluation model for Camellia oleifera in Tongcheng[J]. For Eng, 2018,34(5):39-46. DOI: 10.16270/j.cnki.slgc.2018.05.007.
[15]
袁军, 谭晓风, 罗健 , 等. 不同处理措施对普通油茶种子萌发的影响[J]. 中国种业, 2009,9:50-51.
YUAN J, TAN X F, LUO J , et al. The effect of differential method to seed germination in Camellia oleifera L.[J]. China Seed, 2009,9:50-51. DOI: 10. 3969 /j.issn. 1671-895X.2009.09.024.
[16]
徐恒恒, 黎妮, 刘树君 , 等. 种子萌发及其调控的研究进展[J]. 作物学报, 2014,40(7):1141-1156.
XU H H, LI N, LIU S J , et al. Research progress in seed germination and its control[J]. Acta Agronomica Sinica, 2014,40(7):1141-1156. DOI: 10.3724/SP.J.1006.2014.01141.
[17]
张冠初, 丁红, 杨吉顺 , 等. 不同花生品种种子形状与吸水速率的研究[J]. 花生学报, 2014,43(4):26-31.
ZHANG G C, DING H, YANG J S , et al. Study on water uptake and seed shape of different peanut varieties[J]. Journal of Peanut Science, 2014,43(4):26-31. DOI: 10.3969/j.issn.1002-4093.2014.04.004.
[18]
张冠初, 丁红, 戴良香 , 等. 不同粒重、粒型花生种子吸水规律及萌发特性的研究[J]. 核农学报, 2016,30(2):372-378.
ZHANG G C, DING H, DAI L X , et al. The study of water uptake and germination characteristic in different weight and shape of peanut seeds[J]. Journal of Nuclear Agricultural Science, 2016,30(2):372-378. DOI: 10.11869/j.issn.100-8551.2016.02.0372.
[19]
程军勇, 周席华, 邓先珍 , 等. 不同处理措施对油茶种子发芽率的影响[J]. 湖北林业科技, 2014,43(6):26-27,56.
CHENG J Y, ZHOU X H, DENG X Z , et al. Effect of different treatment measures of seed germination rate of Camellia oleifera[J]. Hubei Forestry Science and Technology, 2014,43(6):26-27, 56. DOI: 10.3969/j.issn.1004-3020.2014.06.008.
[20]
杜维, 阮成江, 丁健 , 等. 液相色谱串联质谱法同时测定油茶不同组织中5类内源激素[J]. 分析科学学报, 2018,34(1):37-42.
DU W, RUAN C J, DING J , et al. Simultaneous determination of five plant hormones in different organs of Camellia oleifera by high performance liquid chromatography-Tandom Mass Spectrometry[J]. Journal of Analytical Science, 2018,34(1):37-42. DOI: 10.13526/j.issn.1006-6144.2018.01.008.
[21]
陈博雯, 刘海龙, 陈晓明 , 等. 高效液相色谱法分离和测定油茶茎尖组织中4 种内源激素[J]. 山东农业科学, 2012,44(3):105-107.
CHEN B W, LIU H L, CHEN X M , et al. Determination of four endogenous hormones in Camellia oleifera Shoot-tip Tissues by HPLC[J]. Shandong Agricultural Sciences, 2012,44(3):105-107. DOI: 10.14083/j.issn.1001-4942.2012.03.003.
[22]
文婷婷, 王洋, 利站 , 等. 豌豆种皮结构和成分对种子透水性的影响[J]. 种子, 2016,35(1):19-25.
WEN T T, WANG Y, LI Z , et al. Effect of seed coat structure and composition on water permeability of pea(Pisum sativum) seed[J]. Seed, 2016,35(1):19-25. DOI: 10.16590/j.cnki.1001-4705.2016.01.019.
[23]
徐亮, 李建东, 殷萍萍 , 等. 野生大豆种皮形态结构和萌发特性的研究[J]. 大豆科学, 2009,28(4):641-646.
XU L, LI J D, YIN P P , et al. Testa morphology structure and germination characteristic of Glycine soja[J]. Soybean Science, 2009,28(4):641-646.
[24]
WEITBRECHT K MÜLLER K LEUBNER-METZGER G . First off the mark: early seed germination[J]. Journal of Experiment Botany, 2011,62(10):3289-3309. DOI: 10.1093/jxb/err030.
[25]
GUBLER F, MILLAR A A, JACOBSEN J V . Dormancy release,ABA and pre-harvest sprouting[J]. Current Opinion Plant Biology, 2005,8(2):183-187. DOI: 10.1016/j.pbi.2005.01.011.
[26]
陈博雯, 刘海龙, 陈晓明 , 等. 2个油茶品种种子萌发过程中激素生理初探[J]. 山西农业科学, 2012,40(8):840-843.
CHEN B W, LIU H L, CHEN X M , et al. Hormone physiology of two Camellia oleifera Abe1. species during seed germination[J]. Joumd of Shanxi Agricultural Sciences, 2012,40(8):840-843. DOI: 10.3969/j.issn.1002-2481.2012.08.09.
[27]
张雁明, 卜海燕, 赵迪矮 , 等. 金莲花种子吸胀过程中内源激素含量的变化[J]. 植物资源与环境学报, 2018,27(4) : 104-106.
ZHANG Y M, BU H Y, ZHAO D A , et al. Change in endogenous hormone content during seed imbibition process of Trollius farreri[J]. Journal of Plant Resources and Environment, 2018,27(4) : 104-106. DOI: CNKI:SUN:ZWZY.0.2018-04-014.
[28]
NONOGAKI H, BASSEL G W, BEWLEY J D . Germination-still a mystery[J]. Plant Science, 2010,179(6):574-581. DOI: 10.1016/j.plantsci.2010.02.010.
[29]
BHARTI A, GARG N , et al. SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress[J]. Ecotoxicology and Environmental Safety, 2019,178:66-78. DOI: 10.1016/j.ecoenv.2019.04.025.
[30]
郑秀珍 . 紫穗槐和刺槐种子萌发过程中内源激素含量及相关酶活性的动态变化[J]. 长江大学学报自科版(农学卷), 2006,3(3):163-165.
ZHENG X Z . Dynamic changes of some endogenous hormone content and activities of some related enzymes during the germination of seeds of Amorpha frutiicosa L. and Robinia pseudoacacia L.[J]. J of Yantze Uinv (Nat Sci Ed), 2006,3(3):163-165. DOI: 10.3969/j.issn.1673-1409.2006.03.019.

RIGHTS & PERMISSIONS

Copyright reserved © 2020.
PDF(1777 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/