Creating site indexes for needle and broadleaved mixed forest using the nonlinear mixed effect model

WANG Dongzhi, HU Xuejiao, LI Dayong, GAO Yushan, LI Tianyu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (4) : 159-166.

PDF(1067 KB)
PDF(1067 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (4) : 159-166. DOI: 10.3969/j.issn.1000-2006.201907010

Creating site indexes for needle and broadleaved mixed forest using the nonlinear mixed effect model

Author information +
History +

Abstract

Objective

Based on the nonlinear mixed effect model and inter-species site index conversion equation, a mixed effect model for the site index of the different tree species in a mixed forest was established to provide a scientific basis for productivity evaluations of mixed tree species forest sites.

Method

Based on data from 83 sample plots (30 m × 30 m) of Larix principis?rupprechtii and Betula platyphylla in the Saihanba mechanical forest farm, the optimal position indices of the different tree species were determined based on six basic site index models (Richards, Log-Logistic, Logistic, Power, Weibull and Korf models) with biological significance. The basic models for the different tree species were fitted and evaluated using the least square method. The best basic model of the different tree species was selected based on the model evaluation index. A nonlinear mixed effect position index model for each tree species was constructed using the Gauss-Newton method. Then, the geometrical linear regression method was used to construct the position index conversion equation between the different tree species based on a nonlinear mixed effect model.

Result

Of the six candidate basic site index models, the Richards and Logistic models were the optimal models for Larix principis?rupprechtii and Betula platyphylla, respectively. In the study, when a site index model with two random effects was constructed, the nonlinear mixed effect model of the different species could not converge, so only one random effect parameter was inclu?ded in the site index model of the different species. When the asymptotic and shape parameters were applied, the nonlinear mixed effect position index model of Larix principis?rupprechtii and Betula platyphylla had a higher fitting precision. Based on the analysis of the prediction of the residuals of the nonlinear mixed effect model, it was determined that there was no heteroscedasticity in the distribution of the residuals of the different tree species, which shows that the nonlinear mixed effect site index model of the different tree species has better prediction and practicability accuracies.The parameters and evaluation indices of the site index conversion equation for Larix principis?rupprechtii and Betula platyphylla were constructed using a geometric linear regression algorithm. The transformation coefficients of the different tree species were determined to be 0.88 and 0.91, respectively, indicating that the prediction accuracy of the site index conversion equations for the different tree species was higher.

Conclusion

In this study, based on the biological significance of the site index prediction model, Richards and Logistic models were determined as the optimal site index models of Larixprincipis?rupprechtii and Betula platyphylla, respectively. Based on the optimal model, the nonlinear mixed effect site index prediction model of the different tree species was constructed using nonlinear mixed effect modeling technology. When the random effect parameters act on the asymptote and shape parameters, the fitting accuracy of the parameters is high. In addition, the transformation equation for the site index of the different species was established using a geometric regression algorithm, which could provide a scientific basis for site quality evaluations and production potential predictions of mixed forests.

Key words

nonlinear mixed effects model / site index / conversion equation / mixed forest

Cite this article

Download Citations
WANG Dongzhi, HU Xuejiao, LI Dayong, GAO Yushan, LI Tianyu. Creating site indexes for needle and broadleaved mixed forest using the nonlinear mixed effect model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(4): 159-166 https://doi.org/10.3969/j.issn.1000-2006.201907010

References

1 MAMO N,STERBA H.Site index functions for Cupressuslusitanica at Munesa Shashemene,Ethiopia[J].Forest Ecology and Management,2006,237(1/2/3): 429-435.DOI:10.1016/j.foreco.2006.09.076.
2 WESTFALL J A,HATFIELD M A,SOWERS P A,et al.Site index models for tree species in the northeastern United States[J].Forest Science,2017,63(3):283-290.DOI:10.5849/fs-2016-090.
3 WANG G G.White spruce site index in relation to soil,understory vegetation,and foliar nutrients[J].Canadian Journal of Forest Research,1995,25(1):29-38.DOI:10.1139/x95-004.
4 SHARMA M,REID D E B.Stand height/site index equations for jack pine and black spruce trees grown in natural stands[J].Forest Science,2017,64(1):33-40.DOI:10.5849/fs-2016-133.
5 M?KINEN H,YUE C F,KOHNLE U.Site index changes of Scots pine,Norway spruce and larch stands in southern and central Finland[J].Agricultural and Forest Meteorology,2017,237/238:95-104.DOI:10.1016/j.agrformet.2017.01.017.
6 KAHR?MAN A.Site index conversion equations for mixed stands of Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky.) in Black Sea Region,turkey[J].Turkish Journal of Agriculture and Forestry,2013,37(4):488-494.DOI:10.3906/tar-1209-80.
7 MONSERUD R A. Height growth and site index curves for inland Douglas?fir based on stem analysis data and forest habitat type [J].Forest Science,1984,30(4):943-965.
8 NIGH G.Site index conversion equations for mixed trembling aspen and white spruce stands in northern British Columbia[J].Silva Fennica,2002,36(4):789-797.DOI:10.14214/sf.521.
9 俞茂宏.线性和非线性的统一强度理论[J].岩石力学与工程学报,2007,26(4):662-669.
9 YU M H.Linear and nonli?near unified strength theory[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(4):662-669.
10 朱光玉,吕勇,林辉,等.三种线性模型在杉木与马尾松地位指数相关关系研究中的比较[J].生态学报,2010,30(21):5862-5867.
10 ZHU G Y,LYU Y,LIN H,et al. Comparison of the three linear models applied for studying of the correlation of site?indexes between Cunninghamia lanceolata and Pinus massoniana stands[J].Acta Ecologica Sinica,2010,30(21):5862-5867.
11 HU Z J,GARCíA O.A height?growth and site?index model for interior spruce in the sub?boreal spruce biogeoclimatic zone of British Columbia[J].Canadian Journal of Forest Research,2010,40(6):1175-1183.DOI:10.1139/x10-075.
12 CIESZEWSKI C J. Comparing fixed?and variable?base?age site equations having single versus multiple asymptotes[J]. Forest Science,2002,48(1):7-23.
13 PERIN J,HéBERT J,BROSTAUX Y,et al.Modelling the top?height growth and site index of Norway spruce in Southern Belgium[J].Forest Ecology and Management,2013,298:62-70.DOI:10.1016/j.foreco.2013.03.009.
14 SHARMA R P,BRUNNER A,EID T,et al.Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors[J].Forest Ecology and Management,2011,262(12):2162-2175.DOI:10.1016/j.foreco.2011.07.037.
15 王冬至,张冬燕,蒋凤玲,等.塞罕坝华北落叶松人工林地位指数模型[J].应用生态学报,2015,26(11):3413-3420.
15 WANG D Z,ZHANG D Y,JIANG F L,et al.A site index model for Larix principis?rupprechtii plantation in Saihanba,North China[J].Chinese Journal of Applied Ecology,2015,26(11):3413-3420.DOI:10.13287/j.1001-9332.20150915.003.
16 陈东升,李凤日,孙晓梅,等.基于线性混合模型的落叶松人工林节子大小预测模型[J].林业科学,2011,47(11):121-128.
16 CHEN D S,LI F R,SUN X M,et al.Models to predict knot size for larch plantation using linear mixed model[J].Scientia Silvae Sinicae,2011,47(11):121-128.
17 王明初,孙玉军.基于混合效应模型及EBLUP预测杉木树高生长过程[J].浙江农林大学学报,2017,34(5):782-790.
17 WANG M C,SUN Y J.Based on mixed?effects model and empirical best linear unbiased predictor predicting growth profile of height for Chinese fir[J].Journal of Zhejiang A & F University,2017,34(5):782-790.
18 RONQUIST F,HUELSENBECK J P.MrBayes 3:Bayesian phylogenetic inference under mixed models[J].Bioinformatics,2003,19(12):1572-1574.DOI:10.1093/bioinformatics/btg180.
19 段光爽,李学东,冯岩,等.华北落叶松天然次生林树高曲线的混合效应模型[J].南京林业大学学报(自然科学版),2018,42(2):163-169.
19 DUAN G S,LI X D,FENG Y,etal.Developing a height?diameter relationship model with mixed randomeffects for Larixprincipis?rupprechtii natural secondary forests[J].J Nanjing For Univ(Nat Sci Ed),2018,42(2):163-169.DOI:10.3969/j.issn.1000-2006.201703014.
20 符利勇,唐守正,张会儒,等.基于多水平非线性混合效应蒙古栎林单木断面积模型[J].林业科学研究,2015,28(1):23-31.
20 FU L Y,TANG S Z,ZHANG H R,et al.Multilevel nonlinear mixed?effects basal area models for individual trees of Quercus mongolica[J].Forest Research,2015,28(1):23-31.DOI:10.13275/j.cnki.lykxyj.2015.01.004.
21 李春明.混合效应模型在森林生长模型中的应用[J].林业科学,2009,45(4):131-138.
21 LI C M.Application of mixed effects models in forest growth model[J].Scientia Silvae Sinicae,2009,45(4):131-138.
22 欧光龙,胥辉,王俊峰,等.思茅松天然林林分生物量混合效应模型构建[J].北京林业大学学报,2015,37(3):101-110.
22 OU G L,XU H,WANG J F,et al.Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var.langbianensis) natural forest[J].Journal of Beijing Forestry University,2015,37(3):101-110.DOI:10.13332/j.1000-1522.20140316.
23 高慧淋,董利虎,李凤日.基于混合效应的人工落叶松树冠轮廓模型[J].林业科学,2017,53(3):84-93.
23 GAO H L,DONG L H,LI F R.Crown shape model for Larix olgensis plantation based on mixed effect[J].Scientia Silvae Sinicae,2017,53(3):84-93.
24 王冬至,张冬燕,王方,等.塞罕坝主要立地类型针阔混交林树高曲线构建[J].北京林业大学学报,2016,38(10):7-14.
24 WANG D Z,ZHANG D Y,WANG F,et al.Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba,Hebei of Northern China[J].Journal of Beijing Forestry University,2016,38(10):7-14.DOI:10.13332/j.1000-1522.20150359.
25 NIGH G D, KAYAHARA G. Site index conversion equations for western redcedar and western hemlock[J].Northwest Science,2000,74(2):146-150.
26 徐罗,亢新刚,刘洋,等.长白山天然云冷杉针阔混交林地位指数导向曲线的模拟[J].东北林业大学学报,2014,42(4):32-37.
26 XU L,KANG X G,LIU Y,et al.Site index guide curve of nature spruce?fir coniferous and broad?leaved mixed stands in Changbai Mountain[J].Journal of Northeast Forestry University,2014,42(4):32-37.DOI:10.13759/j.cnki.dlxb.2014.04.007.
27 CORRAL RIVAS J J,áLVAREZ GONZáLEZ J G,RUíZ GONZáLEZ A D,et al.Compatible height and site index models for five pine species in El Salto,Durango (Mexico)[J].Forest Ecology and Management,2004,201(2/3):145-160.DOI:10.1016/j.foreco.2004.05.060.
28 GARCíA O.Comparing and combining stem analysis and permanent sample plot data in site index models[J].Forest Science,2005,51(4):277-283.
29 GOELZ J C G,BURK T E.Development of a well?behaved site index equation:Jack pine in north central Ontario[J].Canadian Journal of Forest Research,1992,22(6):776-784.DOI:10.1139/x92-106.
30 王冬至,张冬燕,张志东,等.基于非线性混合模型的针阔混交林树高与胸径关系[J].林业科学,2016,52(1):30-36.
30 WANG D Z,ZHANG D Y,ZHANG Z D,et al.Height?diameter relationship for conifer mixed forest based on nonlinear mixed?effects model[J].Scientia Silvae Sinicae,2016,52(1):30-36.
31 SHARMA M,PARTON J.Height?diameter equations for boreal tree species in Ontario using a mixed?effects modeling approach[J].Forest Ecology and Management,2007,249(3):187-198.DOI:10.1016/j.foreco.2007.05.006.
32 DOOLITTLE W T.Site index comparisons for several forest species in the southern Appalachians1[J].Soil Science Society of America Journal,1958,22(5):455.DOI:10.2136/sssaj1958.03615995002200050023x.
33 VANCLAY J K.Assessing site productivity in tropical moist forests:a review[J].Forest Ecology and Management,1992,54(1/2/3/4):257-287.DOI:10.1016/0378-1127(92)90017-4.
34 RICKER W E.Linear regressions in fishery research[J].Journal of the Fisheries Research Board of Canada,1973,30(3):409-434.DOI:10.1139/f73-072.
35 沈剑波,雷相东,雷渊才,等.长白落叶松人工林地位指数及立地形的比较研究[J].北京林业大学学报,2018,40(6):1-8.
35 SHEN J B,LEI X D,LEI Y C,et al.Comparison between site index and site form for site quality evaluation of Larix olgensis plantation[J].Journal of Beijing Forestry University,2018,40(6):1-8.DOI:10.13332/j.1000-1522.20170400.
36 祝维,张西,贾黎明.伏牛山地区栓皮栎天然次生林地位指数表的编制[J].东北林业大学学报,2017,45(12):32-37.
36 ZHU W,ZHANG X,JIA L M.Establishment of site index table for Quercus variabilis natural secondary forest in Funiushan Mountainous area[J].Journal of Northeast Forestry University,2017,45(12):32-37.DOI:10.13759/j.cnki.dlxb.2017.12.007.
37 YANG Y Q,HUANG S.Comparison of different methods for fitting nonlinear mixed forest models and for making predictions[J].Canadian Journal of Forest Research,2011,41(8):1671-1686.DOI:10.1139/x11-071.
38 沈海龙, 崔晓坤, 孙海龙, 等. 东北东部樟子松幼林生长与立地因子关系研究[J]. 森林工程, 2020, 36(3): 12-20.
38 SHEN H L, CUI X K, SUN H L, et al. Relationships between stand growth and site factors in young Mongolian Scots pine plantations in the eastern region of northeast China[J]. Forest Engineering, 2020, 36(3): 12-20. DOI:10.16270/j.cnki.slgc.2020.03.003.
39 BRANDL S,METTE T,FALK W,et al.Static site indices from different national forest inventories:harmonization and prediction from site conditions[J].Annals of Forest Science,2018,75(2):56.DOI:10.1007/s13595-018-0737-3.
40 WANG M L,BORDERS B E,ZHAO D H.An empirical comparison of two subject?specific approaches to dominant heights modeling:the dummy variable method and the mixed model method[J].Forest Ecology and Management,2008,255(7):2659-2669.DOI:10.1016/j.foreco.2008.01.030.
PDF(1067 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/