Genome‑wide identification and expression analysis of GeBP transcription factor gene family in moso bamboo

SHAN Xuemeng, YANG Kebin, SHI Jingjing, ZHU Chenglei, GAO Zhimin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (3) : 41-48.

PDF(2190 KB)
PDF(2190 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (3) : 41-48. DOI: 10.3969/j.issn.1000-2006.201908020

Genome‑wide identification and expression analysis of GeBP transcription factor gene family in moso bamboo

Author information +
History +

Abstract

Objective

Molecular characteristics and expression pattern of GeBP transcription factors (TFs) in moso bamboo (Phyllostachys edulis) were studied in order to help reveal the role of GeBP TFs involved in the formation of trichomes.

Method

Bioinformatic tools were used for systematic analyses of GeBP TFs in moso bamboo, including the online software GSDS 2.0 to examine gene structure, ExPaSy to investigate basic physicochemical properties, and Plant mPLoc to study protein structural characteristics and their subcellular locations. Phylogenetic analyses were performed using MEGA6.0 and amino acid sequences of GeBPs of different species. Transcriptome data generated from different tissues such as rhizome roots, stem roots, shoots, leaves and sheath blades were used to analyze expression patterns of GeBP genes in moso bamboo. Quantitative reverse?transcription PCR (qRT?PCR) was performed to assess expression patterns of GeBP genes using cDNA of different amounts of trichome tissue.

Result

A total of 16 members of the GeBP gene family were identified in the genome of moso bamboo (PeGeBP1 to PeGeBP16). Only three PeGeBPs (PeGeBP3, PeGeBP4 and PeGeBP5) contained introns (n = 1, n = 1, n = 5, respectively). The molecular weight of proteins encoded by PeGeBPs ranged from 23.37 to 62.17 ku, and the theoretical isoelectric points ranged from 5.02 to 10.14. Predictions of subcellular locations showed that five PeGeBPs are located in both nucleus and cytoplasm, ten PeGeBPs are in nucleus, and one occurs only in the cytoplasm. Phylogenetic analyses suggested four clades of PeGeBPs with five, four, three and four members, respectively; they appeared to be closely related to those of Oryza sativa and Brachypodium distachyum and distantly related to those of Arabidopsis thaliana and Populus trichocarpa. Transcriptome data indicated that all PeGeBPs are expressed in rhizome roots, stem roots, shoots, leaves and sheath blades, at certain differences, apart from PeGeBP5 which was not expressed in leaves. qRT?PCR results showed that 16 PeGeBPs occurred in leaves, shoots, sheaths, sheath blades and cilia, and significant differences between tissue types were observed. Expression levels of 12 PeGeBPs in tissues containing trichomes such as leaves, sheaths, sheath blades and cilia were higher than those in shoots without trichomes. Only PeGeBP16 showed higher expression levels in shoots than that in other tissues. Moreover, expression levels of the other three genes in bamboo shoots were also low.

Conclusion

Sixteen GeBP genes were identified in moso bamboo, and their expression levels differed significantly between tissues, suggesting functional diversity. Expression levels of 12 out of 16 PeGeBPs were higher in tissues containing trichomes than that in tissues without trichomes, suggesting that these genes may be involved in the regulation of trichome formation.

Key words

Phyllostachys edulis / GeBP transcription factor genes / expression pattern / trichome

Cite this article

Download Citations
SHAN Xuemeng, YANG Kebin, SHI Jingjing, ZHU Chenglei, GAO Zhimin. Genome‑wide identification and expression analysis of GeBP transcription factor gene family in moso bamboo[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(3): 41-48 https://doi.org/10.3969/j.issn.1000-2006.201908020

References

1 BALKUNDE R, PESCH M, HüLSKAMP M. Trichome patterning in Arabidopsis thaliana from genetic to molecular models[J]. Current Topics Development Biology, 2010, 91(91): 299-321. DOI: 10.1016/S0070-2153(10)91010?7.
2 高英, 郭建强, 赵金凤. 拟南芥表皮毛发育的分子机制[J]. 植物学报, 2011, 46(1): 119-127.
2 GAO Y, GUO J Q, ZHAO J F. Molecular mechanism of epidermal hair development in Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2011, 46(1): 119-127. DOI: 10.3724/SP.J.1259.2011.00119.
3 张继伟, 赵杰才, 周琴, 等. 植物表皮毛研究进展[J]. 植物学报, 2018, 53(5): 155-166.
3 ZHANG J W, ZHAO J C, ZHOU Q, et al. Progress in research of plant trichome[J]. Chinese Bulletin of Botany, 2018, 53(5): 155-166. DOI: 10.11983/CBB17078.
4 ATALAY Z, CELEP F, BARA F, et al. Systematic significance of anatomy and trichome morphology in Lamium (Lamioideae; Lamiaceae)[J]. Flora, 2016, 225: 60-75. DOI: 10.1016/j.flora.2016.10.006.
5 江泽慧. 世界竹藤[M]. 沈阳:辽宁科学技术出版社, 2002.
5 JIANG Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Publishing House, 2002.
6 张文燕, 马乃训. 竹类植物花期生物学特性[J]. 林业科学研究, 1989, 2(6): 596-600.
6 ZHANG W Y, MA N X. Biological characteristics of bamboo plants at flowering stage[J]. Forest Research, 1989, 2(6): 596-600. DOI:10.13275/j.cnki.lykxyj.1989.06.019.
7 朱振贤, 张芬耀, 宋盛, 等. 竹亚科植物分类研究进展[J]. 世界林业研究, 2017, 30(3): 35-40.
7 ZHU Z X, ZHANG F Y, SONG S, et al. Research advances in Bambuseae taxonomy[J]. World Forest Research, 2017, 30(3): 35-40. DOI: 10.13348/j.cnki.sjlyyj.2007.0033.y.
8 王润辉, 夏念和, 林汝顺. 箣竹属和牡竹属(竹亚科)叶表皮微形态特征[J]. 热带亚热带植物学报, 2002, 10(1): 22-26.
8 WANG R H, XIA N H, LIN R S. Micromorphological study on leaf epiderm is of Bambusa and Dendrocalamus (Poaceae: Bambusoideae)[J]. Journal of Tropical and Subtropical Botany, 2002, 10(1): 22-26. DOI: 10.3969/j.issn.1005-3395.2002.1.004.
9 普莉, 索金凤, 薛勇彪. 植物表皮毛发育的分子遗传控制[J]. 遗传学报, 2003, 30(11): 1078-1084.
9 PU L, SUO J F, XUE Y B. Molecular control of plant trichome development[J]. Journal of Genetics and Genomics, 2003, 30(11): 1078-1084.
10 CHEVALIER F, PERAZZA D, LAPORTE F, et al. GeBP and GeBP?like proteins are noncanonical leucine?zipper transcription factors that regulate cytokinin response in Arabidopsis[J]. Plant Physiology, 2008, 146(3): 1142-1154. DOI: 10.2307/40065924.
11 陈凯, 刘金秋, 宋海慧, 等. 番茄GeBP转录因子家族的鉴定及其进化和表达分析[J]. 分子植物育种, 2017, 15(9): 3438-3445.
11 CHEN K, LIU J Q, SONG H H, et al. Identification, evolution and expression analysis of GeBP transcription factors family in tomato[J]. Molecular Plant Breeding, 2017, 15(9): 3438-3445. DOI: 10.13271/j.mpb.015.003438.
12 石蕾. 水稻GeBP家族基因的功能初探[D]. 武汉:华中农业大学, 2013.
12 SHI L. Preliminary functional analysis of the GeBP gene family in rice[D]. Wuhan: Huazhong Agricultural University, 2013.
13 CURABA J, HERZOG M, VACHON G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA?binding activity and is regulated by KNAT1[J]. The Plant Journal, 2003, 33(2): 305-317. DOI: 10.1046/j.1365-313X.2003.01622.x.
14 PENG Z H, LU Y, LI L B, et al. The draft genome of the fast growing non?timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4): 456-461. DOI: 10.1038/ng.2569.
15 ZHAO H S, PENG Z H, FEI B H, et al. BambooGDB: a bamboo genome database with functional annotation and an analysis platform[J]. Database (Oxford), 2014, 2014: bau006. DOI: 10.1093/database/bau006.
16 GAO Z M, LI X P, LI L B, et al. An effective method for total RNA isolation from bamboo[J]. Chinese Forestry Science and Technology, 2006, 5(3): 52-54.
17 郭安源, 朱其慧, 陈新, 等. GSDS: 基因结构显示系统[J]. 遗传, 2007, 29(8): 1023-1026.
17 GUO A Y, ZHU Q H, CHEN X, et al. GSDS: a gene structure display server[J]. Hereditas, 2007, 29(8): 1023-1026. DOI: 10.3321/j.issn:0253-9772.2007.08.021.
18 TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2719. DOI: 10.1093/molbev/mst197.
19 ZHAO H S, GAO Z M, WANG L, et al. Chromosome?level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience, 2018, 7(10): gjy115. DOI: 10.1093/gigascience/giy115.
20 FAN C, MA J, GUO Q, et al. Selection of reference genes for quantitative real?time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2): e56573. DOI: 10.1371/journal.pone.0056573.
21 LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real?time quantitative PCR and the 2?△△CT method[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.200.
22 康桂娟, 黎瑜, 曾日中. 巴西橡胶树HbNAM基因克隆和表达分析[J]. 南京林业大学学报(自然科学版), 2016, 40(1): 59?64.
22 KANG G J, LI Y, ZENG R Z. Clone and expression analysis of HbNAM from Hevea brasiliensis Muell. Arg.[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(1): 59-64. DOI: 10.3969/j.issn.1000-2006.2016.01.010.
23 董京祥, 任丽, 张园, 等. 白桦BpTCPs基因家族生物信息学及时空表达分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 113-118.
23 DONG J X, REN L, ZHANG Y, et al. Bioinformatics and expression analysis of BpTCPs in Betula platyphylla Suk[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(4): 113-118. DOI: 10.3969/j.issn.1000-2006.201709001.
24 田晶, 赵雪媛, 谢隆圣, 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 159-166.
24 TIAN J, ZHAO X Y, XIE L S, et al. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(3): 159?166. DOI: 10.3969/j.issn.1000-2006.201708015.
25 赵广枝, 孙化雨, 赵韩生, 等. 毛竹基因组测序及数据应用研究现状[J]. 世界竹藤通讯, 2015, 13(3): 8-12.
25 ZHAO G Z, SUN H Y, ZHAO H S, et al. A study of genome sequencing of Phyllostachys edulis and its data applications[J]. World Bamboo and Rattan, 2015, 13(3): 8-12. DOI: 10.13640/j.cnki.wbr.2015.03.002.
26 YANG K B, LI Y, WANG S N, et al. Genome?wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis)[J]. Peer J, 2019, 6: e6242. DOI: 10.7717/peerj.6242.
27 ZHAO H S, DONG L L, SUN H Y, et al. Comprehensive analysis of multi?tissue transcriptome data and the genome?wide investigation of GRAS family in Phyllostachys edulis[J]. Scientific Reports, 2016, 6: 27640. DOI: 10.1038/srep27640.
28 黎帮勇, 胡尚连, 曹颖, 等. 毛竹NAC转录因子家族生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(8): 1769-1777.
28 LI B Y, HU S L, CAO Y, et al. Bioinformatics analysis of NAC gene family in moso bamboo[J]. Genomics and Applied Biology, 2015, 34(8): 1769-1777. DOI: 10.13417/j.gab.034.001769.
29 CURABA J, HERZOG M, VACHON G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA?binding activity and is regulated by KNAT1[J]. The Plant Journal, 2003, 33(2): 305-317. DOI: 10.1046/j.1365-313X.2003.01622.x.
30 ZHAO M, MOROHASHI K, HATLESTAD G, et al. The TTG1?bHLH?MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci[J]. Development, 2008, 135(11): 1991-1999. DOI: 10.1242/dev.016873.
31 DOROSHKOV A V, KONSTANTINOV D K, AFONNIKOV D A, et al. The evolution of gene regulatory networks controlling Arabidopsisthaliana L. trichome development[J]. BMC Plant Biology, 2019, 19(Suppl 1): 53. DOI: 10.1186/s12870?019?1640?2.
32 ZHOU Z, SUN L, ZHAO Y, et al. Zinc finger protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana[J]. New Phytologist, 2013, 198(3): 699-708. DOI: 10.1111/nph.12211.
33 WANG S, KWAK S H, ZENG Q, et al. TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis[J]. Development, 2007, 134(21): 3873-3882. DOI: 10.1242/dev.009597.
PDF(2190 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/