
Screening on reference genes for real⁃time fluorescent quantitative PCR of Freesiahybrida
DING Suqin, LI Xi, Tang Dongqin
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (3) : 19-25.
Screening on reference genes for real⁃time fluorescent quantitative PCR of Freesiahybrida
Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) has become the most common method for studying gene expression. The appropriate application of qRT-PCR in such studies requires the use of reference gene(s) as an internal control in order to normalize the mRNA levels between different samples for an exact comparison of gene expression levels. The aim of the present study was to screen optimized reference genes for qRT-PCR in Freesiahybrida for future studies on the gene expression of Freesia, especially the genes relative to corm development.
Freesia hybrida cultivar ‘Shangnong Golden Queen’ was used as the plant material in the study. Six different tissues or organs including tepal, pistil and stamen (mixed samples), flower scape, leaf, corm and root, corms at five developmental stages and corms under treatments with three exogenous hormones, were collected, respectively. qRT-PCR was used to analyze the gene expression level of selected eight commonly used housekeeping genes, including Actin, Glyceraldehyde-3-phosphate (GAPDH), β-tubulin (TUB), 18S rRNA, elongation factor 1 beta (EF-1β), ubiquinol-cytochrome C reductase (QCR), cyclophilin (CYP) and S-adenosylmethionine decarboxylase (SAMDC). Three widely-used software, including geNorm, NormFinder and BestKeeper, were used to make a comprehensive analysis on the stability of gene expression.
The eight candidate housekeeping genes could be expressed in diffe-rent tissues and organs of Freesia hybrida ‘Shangnong Golden Queen’ with individual expression richness. Among those, two genes, 18S rRNA and Actin were the most stable, while EF???1β was the most unstable gene based on the analysis with the three software. In the corms at five developmental stages, three candidate genes, QCR, Actin and TUB presented a stable expression level, which can be selected as reference genes in future studies on the gene expression involving corm development. While CYP and 18S rRNAwere not stable, these two genes were not introduced to analyze gene expression in corms at different developmental stages. In corms under treatments with exogenous hormones, the expression of CYP and 18S rRNA was quite stable, while EF?1β was the most unstable gene in this experimental condition.
This is the first time reference genes were screened for a given set of experimental conditions in Freesia hybrida. Taken together, 18S rRNAand Actin were the preferred internal reference genes for gene expression analysis in different tissues of Freesia. QCR,Actin and TUB were the optimized genes in corm development, while for the gene expression analysis under hormone induction, the preferred reference genes were 18S rRNA and CYP. Our findings provide a guideline for any future work on gene expression in Freesia by using qRT-PCR.
Freesia hybrida / reference genes / real-time fluorescence quantitative PCR(qRT-PCR) / corm / Freesia
1 | WANG L. Freesia[M]∥ANDERSON N O. Flower breeding and genetics. New York, USA: Springer, 2007: 665–693. |
2 | VANGUILDER H D,VRANA K E,FREEMAN W M.Twenty?five years of quantitative PCR for gene expression analysis[J].Bio Techniques,2008,44(5):619-626. DOI:10.2144/000112776. |
3 | GIULIETTI A,OVERBERGH L,VALCKX D,et al.An overview of real?time quantitative PCR:applications to quantify cytokine gene expression[J].Methods,2001,25(4):386-401. DOI:10.1006/meth.2001.1261. |
4 | NOLAN T,HANDS R E,BUSTIN S A.Quantification of mRNA using real?time RT?PCR[J].Nat Protoc,2006,1(3):1559-1582.DOI:10.1038/nprot.2006.236. |
5 | EISENBERG E,LEVANON E Y.Human housekeeping genes are compact[J].Trends Genet,2003,19(7):362-365. DOI:10.1016/s0168-9525(03)00140-9. |
6 | BUTTE A J,DZAU V J,GLUECK S B.Further defining housekeeping,or “maintenance” genes focus on “a compendium of gene expression in normal human tissues”[J].Physiol Genom,2001,7(2):95-96.DOI:10.1152/physiolgenomics. 2001.7.2.95. |
7 | 蒋婷婷,高燕会,童再康.石蒜属植物实时荧光定量PCR内参基因的选择[J].园艺学报,2015,42(6):1129-1138. |
7 | JIANG T T,GAO Y H,TONG Z K.Selection of reference genes for quantitative real?time PCR in Lycoris[J].Acta Hortic Sin,2015,42(6):1129-1138. DOI:10.16420/j.issn.0513-353x.2014-0999. |
8 | LI X,TANG D Q,SHI Y M.Selection of reference genes for quantitative real?time PCR normalization in Narcissuspseudonarcissus in different cultivars and different organs[J].Heliyon,2018,4(7):e00686. DOI:10.1016/j.heliyon.2018.e00686. |
9 | QI S,YANG L W,WEN X H,et al.Reference gene selection for RT?qPCR analysis of flower development in Chrysanthemummorifolium and Chrysanthemumlavandulifolium[J].Front Plant Sci,2016,7:287. DOI:10.3389/fpls.2016.00287. |
10 | 吕运舟,董筱昀,黄利斌.黄山栾树实时荧光定量PCR内参基因的筛选[J].分子植物育种,2019,17(2):553-560. |
10 | Lü Y Z,DONG X Y,HUANG L B.The screening of reference genes for real?time fluorescent quantitative PCR of Koelreuteriabipinnata[J].Mol Plant Breed,2019,17(2):553-560. DOI:10.13271/j.mpb.017.000553. |
11 | 王彦杰,陈叶清,薛泽云,等.荷花花瓣着色过程实时荧光定量PCR内参基因的筛选及验证[J].南京农业大学学报,2017,40(3):408-415. |
11 | WANG Y J,CHEN Y Q,XUE Z Y,et al.Selection and validation of reference genes for RT???qPCR normalization in lotus(Nelumbonucifera)during petal coloration[J].J Nanjing Agric Univ,2017,40(3):408-415. DOI:10.7685/jnau.201609033. |
12 | 陈敏敏,张茹佳,查倩,等.百合体胚诱导、发育及不同组织实时定量PCR内参基因筛选[J].分子植物育种,2018,16(15):4982-4990. |
12 | CHEN M M,ZHANG R J,ZHA Q,et al.Induction and development of lily somatic embryo and internal reference genes screening for RT?PCR in different tissues[J].Mol Plant Breed,2018,16(15):4982-4990. DOI:10.13271/j.mpb. 016.004982. |
13 | TANG D Q,SUN Y,LI X,et al.De novo sequencing of the Freesiahybrida petal transcriptome to discover putative anthocyanin biosynthetic genes and develop EST?SSR markers[J].Acta Physiol Plant,2018,40(9):168. DOI:10.1007/s11738-018-2739-z. |
14 | 李健.芍药实时定量PCR内参基因的筛选和验证[J].分子植物育种,2017,15(7):2544-2549. |
14 | LI J.Selection and validation of reference genes for quantitative real?time PCR in herbaceous peony[J].Mol Plant Breed,2017,15(7):2544-2549. DOI:10.13271/j.mpb.015.002544. |
15 | 刘青芝,谷巍,孙云飞,等.东方泽泻实时荧光定量PCR内参基因的筛选及AoSS基因的组织表达特性分析[J].南方农业学报,2018,49(8):1467-1475. |
15 | LIU Q Z,GU W,SUN Y F,et al.Selection of reference genes of Alismaorientale(Sam.) Juzep by real?time fluorescence quantitative PCR and expression characters of AoSS in tissues[J].J South Agric,2018,49(8):1467-1475. |
16 | BRUNNER A M,YAKOVLEV I A,STRAUSS S.Validating internal controls for quantitative plant gene expression studies[J].BMC Plant Biology,2004,4(1):1-7. DOI:10.1186/1471-2229-4-14. |
17 | 姜婷,苏乔,安利佳.多重胁迫下玉米实时定量PCR内参基因的筛选与验证[J].植物生理学报,2015,51(9):1457-1464. |
17 | JIANG T,SU Q,AN L J.Screening and validation of reference genes of qPCR in maize under multiple stresses[J].Plant Physiol J,2015,51(9):1457-1464. DOI:10.13592/j.cnki.ppj.2015. 0140. |
18 | 任锐,戴鹏辉,李萌,等.珙桐实时定量PCR内参基因的筛选及稳定性评价[J].植物生理学报,2016,52(10):1565-1575. |
18 | REN R,DAI P H,LI M,et al.Selection and stability evaluation of reference genes for real???time quantitative PCR in dove tree(Davidiainvolucrata)[J].Plant Physiol J,2016,52(10):1565-1575. DOI:10.13592/j.cnki.ppj.2016.0325. |
19 | 刘晓婷,王顺利,薛璟祺,等.朱顶红实时荧光定量PCR中不同组织器官内参基因的筛选[J].园艺学报,2018,45(5):919-930. |
19 | LIU X T,WANG S L,XUE J Q,et al.Selection of reference genes for quantitative real?time PCR in different tissue and organ of barbadoslily[J].Acta Hortic Sin,2018,45(5):919-930. DOI:10.16420/j.issn.0513-353x.2017-0780. |
20 | 杨航,刘红昌,石小兵,等.三叶木通果实成熟过程内参基因筛选[J].基因组学与应用生物学,2016,35(5):1206-1212. |
20 | YANG H,LIU H C,SHI X B,et al.Selection of reference genes during berry development in Akebiatrifoliate(Thunb.) Koidz[J].Genom Appl Biol,2016,35(5):1206-1212. DOI:10.13417/j.gab.035.001206. |
21 | GAO F Z,LIU B F,LI M,et al.Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesiahybrida[J]. J Exp Bot,2018,69(18):4249-4265. DOI:10.1093/jxb/ery224. |
22 | LUO H L,LUO L P,GUAN B C,et al.Evaluation of candidate reference genes for RT???qPCR in lily (Liliumbrownii)[J]. J Hortic Sci Biotechnol,2014,89(3):345-351. DOI:10.1080/1462 0316.2014.11513089. |
23 | 蔡嘉洛,朱贻霖,谢舒平,等.灰毡毛忍冬内参基因筛选和Mads???box家族基因AGL15的时空表达分析[J].中草药,2016,47(15):2727-2733. |
23 | CAI J L,ZHU Y L,XIE S P,et al.Screening of reference genes in Loniceramacranthoides and spatio?temporal expression analysis of LmAGL15 in Mads???box family[J].Chin Tradit Herb Drugs,2016,47(15):2727-2733. DOI:10.7501/j.issn.0253-2670.2016.15.022. |
24 | CUI S J,HE Q L,CHEN Y,et al.Evaluation of suitable reference genes for gene expression studies in Lycorislongituba[J].J Genet,2011,90(3):503-506.DOI:10.1007/s12041-011-0113-7. |
25 | 王梨嬛,潘永娟,杨莉,等.‘琯溪蜜柚’荧光定量PCR内参基因的筛选[J].果树学报,2013,30(1):48-54. |
25 | WANG L H,PAN Y J,YANG L, et al.Validation of internal reference genes for qRT???PCR normalization in ‘Guanxi Sweet Pummelo’(Citrusgrandis)[J].J Fruit Sci,2013,30(1):48-54. DOI:10.13925/j.cnki.gsxb.2013.01.014. |
26 | YAN J W,YUAN F R,LONG G Y,et al.Selection of reference genes for quantitative real?time RT?PCR analysis in Citrus[J].Mol Biol Rep,2012,39(2):1831-1838. DOI:10.1007/s11033-011-0925-9. |
/
〈 |
|
〉 |