A review on genomics information resources available for molecular breeding studies in forest trees

GAN Siming

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (4) : 1-11.

PDF(2049 KB)
PDF(2049 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (4) : 1-11. DOI: 10.3969/j.issn.1000-2006.202005036

A review on genomics information resources available for molecular breeding studies in forest trees

Author information +
History +

Abstract

Molecular breeding refers to selection practices based on DNA markers associated with phenotypic traits, called also as marker assisted selection or marker assisted breeding, in which genetic engineering breeding and geno?mics aided breeding were included in a broad term. It provided a potentially efficient option for early selection and accelerated breeding in forest trees. This review presents the advancement and prospects of genomics information resources for tree molecular breeding studies. In recent three decades, molecular marker techniques have been developed from earlier low-throughput assay to currently high-throughput microarray- and next-generation-sequencing-based platforms, such as genotyping by sequencing, transcriptome sequencing, genome re-sequencing, target amplicon sequencing and exome sequencing, and these high-throughput techniques have been widely used in the three main approaches for identifying trait-related DNA variations in forest trees, including linkage mapping, association genetics and genomic selection studies. More than 50 tree species have been genome sequenced since the first release of Populustrichocarpa whole genome sequence. Linkage mapping and association genetics studies have resulted in many genomic loci related with growth, wood properties and stress responses as well as non-wood product quality traits in more than 10 tree genera, highlighting the trends below: ① a multitude of phenotypic traits investigated, covering economic characteristics, physiological indices and metabolic composition; ② hundreds of thousands of markers across the whole genome scanned; ③ integration of multi-omics data; ④ large population size for high-resolution fine mapping; ⑤ multiple site trials for dissecting the interactions between genotype and environment and between genotype and age; ⑥ mining candidate genes from reference genome sequence and/or differentially expressed transcriptomic genes. Genomic selection models have been formulated for a number of major cultivation tree species in genera Eucalyptus, Pinus and Picea. Other genomic information resour ces such as pan genomes, computational tools and software packages, functional genes, genome editing techniques and online databases have also been available. Challenges that forest tree molecular breeding is facing include:① how to obtain environmentally stable trait-related genomic loci and genomic selection models; ②lacking of autonomous, non-destructive and high-throughput phenotyping methods; ③ difficulty in high-quality genome assembly for genome-large conifers and polyploidy tree species; ④ application uncertainty and balance of additional investment for marker-assisted selection in a breeding program; ⑤ technical barrier in accelerated breeding for most tree species. In the post-genome area, molecular breeding will be integrated effectively into tree breeding programs and can be expected to contribute largely to capturing higher genetic gains as compared to the traditional breeding.

Key words

forest tree molecular breeding / genomics / linkage mapping / association studies / genomic selection(GS) / accelerated breeding

Cite this article

Download Citations
GAN Siming. A review on genomics information resources available for molecular breeding studies in forest trees[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(4): 1-11 https://doi.org/10.3969/j.issn.1000-2006.202005036

References

1 FAO. Report of the 14th regular session of the commission on genetic resources for food and agriculture [M/OL]. Rome: Food and Agriculture Organization of the United Nations, 2013. .
2 王明庥.林木遗传育种学[M].北京:中国林业出版社,2001.
2 WANG M X.Forest tree genetics and breeding [M].Beijing:China Forestry Publishing House,2001.
3 GRATTAPAGLIA D,SILVA?JUNIOR O B,RESENDE R T,et al.Quantitative genetics and genomics converge to accelerate forest tree breeding[J].Front Plant Sci,2018,9:1693. DOI:10.3389/fpls.2018.01693.
4 WATSON A,GHOSH S,WILLIAMS M J,et al.Speed breeding is a powerful tool to accelerate crop research and breeding[J].Nat Plants,2018,4(1):23. DOI:10.1038/s41477-017-0083-8.
5 MOOSE S P,MUMM R H.Molecular plant breeding as the foundation for 21st century crop improvement[J].Plant Physiol,2008,147(3):969-977. DOI:10.1104/pp.108.118232.
6 COBB J N,BISWAS P S,PLATTEN J D.Back to the future:revisiting MAS as a tool for modern plant breeding[J].Theor Appl Genet,2019,132(3):647-667. DOI:10.1007/s00122-018-3266-4.
7 PLOMION C,BASTIEN C,BOGEAT?TRIBOULOT M B,et al.Forest tree genomics:10 achievements from the past 10 years and future prospects[J].Ann For Sci,2016,73(1):77-103. DOI:10.1007/s13595-015-0488-3.
8 VARSHNEY R K,PANDEY M K,BOHRA A,et al.Toward the sequence?based breeding in legumes in the post-genome sequencing era[J].Theor Appl Genet,2019,132(3):797-816. DOI:10.1007/s00122-018-3252-x.
9 RASHEED A,XIA X C.From markers to genome-based breeding in wheat[J].Theor Appl Genet,2019,132(3):767-784. DOI:10.1007/s00122-019-03286-4.
10 孟凡娟.分子生物学新技术在林木育种中的应用进展[M].北京:科学出版社,2014.
10 MENG F J.Progresses on application of new techniques of molecular biology to forest tree breeding[M].Beijing:Science Press,2014.
11 INGVARSSON P K,HVIDSTEN T R,STREET N R.Towards integration of population and comparative genomics in forest trees[J].New Phytol,2016,212(2):338-344. DOI:10.1111/nph.14153.
12 TUSKAN G A,GROOVER A T,SCHMUTZ J,et al.Hardwood tree genomics:unlocking woody plant biology[J].Front Plant Sci,2018,9:1799. DOI:10.3389/fpls.2018.01799.
13 CHAWLA H S. Introduction to plant biotechnology[M]. 2nd Ed. Enfield: Science Publishers Inc, 2002.
14 PARSONS T J,SINKAR V P,STETTLER R F,et al.Transformation of poplar by Agrobacterium tumefaciens[J].Nat Biotechnol,1986,4(6):533-536. DOI:10.1038/nbt0686-533.
15 TULSIERAM L K,GLAUBITZ J C,KISS G,et al.Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes[J].Bio/Technology,1992,10(6):686. DOI:10.1038/nbt0692-686.
16 STRAUSS S H,LANDE R,NAMKOONG G.Limitations of molecular?marker?aided selection in forest tree breeding[J].Can J For Res,1992,22(7):1050-1061. DOI:10.1139/x92-140.
17 GRATTAPAGLIA D,SEDEROFF R.Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross:mapping strategy and RAPD markers[J].Genetics,1994,137(4):1121-1137.
18 DEVEY M E,FIDDLER T A,LIU B H,et al.An RFLP linkage map for loblolly pine based on a three?generation outbred pedigree[J].Theor Appl Genet,1994,88(3/4):273-278. DOI:10.1007/BF00223631.
19 GROOVER A,DEVEY M,FIDDLER T,et al.Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine[J].Genetics,1994,138(4):1293-1300.
20 ALLONA I,QUINN M,SHOOP E,et al.Analysis of xylem formation in pine by cDNA sequencing[J].PNAS,1998,95(16):9693-9698. DOI:10.1073/pnas.95.16.9693.
21 SEWELL M M,SHERMAN B K,NEALE D B.A consensus map for loblolly pine (Pinus taeda L.).I.Construction and integration of individual linkage maps from two outbred three?generation pedigrees[J].Genetics,1999,151(1):321-330.
22 TEMESGEN B,BROWN G R,HARRY D E,et al.Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.)[J].Theor Appl Genet,2001,102(5):664-675. DOI:10.1007/s001220051695.
23 CERVERA M T,STORME V,IVENS B,et al.Dense genetic linkage maps of three Populus species (Populus deltoidesP.nigra and P.trichocarpa) based on AFLP and microsatellite markers[J].Genetics,2001,158(2):787-809.
24 BRONDANI R,BRONDANI C,GRATTAPAGLIA D.Towards a genus?wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers[J].Mol Genet Genom,2002,267(3):338-347. DOI:10.1007/s00438-002-0665-6.
25 THUMMA B R,NOLAN M F,EVANS R,et al.Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp[J].Genetics,2005,171(3):1257-1265. DOI:10.1534/genetics.105.042028.
26 KIRST M,BASTEN C J,MYBURG A A,et al.Genetic architecture of transcript?level variation in differentiating xylem of a Eucalyptus hybrid[J].Genetics,2005,169(4):2295-2303. DOI:10.1534/genetics.104.039198.
27 TUSKAN G A,DIFAZIO S,JANSSON S,et al.The genome of black cottonwood,Populus trichocarpa (Torr.& Gray)[J].Science,2006,313(5793):1596-1604. DOI:10.1126/science.1128691.
28 KELLEHER C T,CHIU R,SHIN H,et al.A physical map of the highly heterozygous Populus genome:integration with the genome sequence and genetic map and analysis of haplotype variation[J].Plant J,2007,50(6):1063-1078. DOI:10.1111/j.1365-313X.2007.03112.x.
29 PAVY N,PELGAS B,BEAUSEIGLE S,et al.Enhancing genetic mapping of complex genomes through the design of highly?multiplexed SNP arrays:application to the large and unsequenced genomes of white spruce and black spruce[J].BMC Genom,2008,9(1):1-17. DOI:10.1186/1471-2164-9-21.
30 DROST D R,NOVAES E,BOAVENTURA?NOVAES C,et al.A microarray?based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence[J].Plant J,2009,58(6):1054-1067. DOI:10.1111/j.1365-313X.2009.03828.x.
31 SANSALONI C,PETROLI C,CARLING J,et al.A high?density Diversity Arrays Technology (DArT) microarray for genome?wide genotyping in Eucalyptus[J].Plant Methods,2010,6(1):16. DOI:10.1186/1746-4811-6-16.
32 GERALDES A,PANG J,THIESSEN N,et al.SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing[J].Mol Ecol Resour,2011,11:81-92. DOI:10.1111/j.1755-0998.2010.02960.x.
33 RESENDE M D V,RESENDE JR M F R,SANSALONI C P,et al.Genomic selection for growth and wood quality in Eucalyptus:capturing the missing heritability and accelerating breeding for complex traits in forest trees[J].New Phytol,2012,194(1):116-128. DOI:10.1111/j.1469-8137.2011.04038.x.
34 PARCHMAN T L,GOMPERT Z,MUDGE J,et al.Genome?wide association genetics of an adaptive trait in lodgepole pine[J].Mol Ecol,2012,21(12):2991-3005. DOI:10.1111/j.1365-294X.2012.05513.x.
35 NYSTEDT B,STREET N R,WETTERBOM A,et al.The Norway spruce genome sequence and conifer genome evolution[J].Nature,2013,497(7451):579. DOI:10.1038/nature12211.
36 PORTH I,KLáP?Tě J,SKYBA O,et al.Populus trichocarpa cell wall chemistry and ultrastructure trait variation,genetic control and genetic correlations[J].New Phytol,2013,197(3):777-790. DOI:10.1111/nph.12014.
37 NEVES L G,DAVIS J M,BARBAZUK W B,et al.Whole?exome targeted sequencing of the uncharacterized pine genome[J].Plant J,2013,75(1):146-156. DOI:10.1111/tpj.12193.
38 MYBURG A A,GRATTAPAGLIA D,TUSKAN G A,et al.The genome of Eucalyptus grandis[J].Nature,2014,510(7505):356. DOI:10.1038/nature13308.
39 NEALE D B,WEGRZYN J L,STEVENS K A,et al.Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J].Genome Biol,2014,15(3):1-13. DOI:10.1186/gb-2014-15-3-r59.
40 EVANS L M,SLAVOV G T,RODGERS?MELNICK E,et al.Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations[J].Nat Genet,2014,46(10):1089. DOI:10.1038/ng.3075.
41 ZHOU X H,JACOBS T B,XUE L J,et al.Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4?coumarate:CoA ligase specificity and redundancy[J].New Phytol,2015,208(2):298-301. DOI:10.1111/nph.13470.
42 SILVA?JUNIOR O B,FARIA D A,GRATTAPAGLIA D.A flexible multi?species genome?wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species[J].New Phytol,2015,206(4):1527-1540. DOI:10.1111/nph.13322.
43 ZHANG J,YANG Y,ZHENG K J,et al.Genome?wide association studies and expression?based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense?responsive transcription factors in Populus[J].New Phytol,2018,220(2):502-516. DOI:10.1111/nph.15297.
44 DE LA TORRE A R,PUIU D,CREPEAU M W,et al.Genomic architecture of complex traits in loblolly pine[J].New Phytol,2019,221(4):1789-1801. DOI:10.1111/nph.15535.
45 LU W J,XIAO L,QUAN M Y,et al.Linkage?linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in Populus[J].New Phytol,2020,225(3):1218-1233. DOI:10.1111/nph.16220.
46 GROVER A,SHARMA P C.Development and use of molecular markers:past and present[J].Crit Rev Biotechnol,2016,36(2):290-302. DOI:10.3109/07388551.2014.959891.
47 GARRIDO?CARDENAS J A,MESA?VALLE C,MANZANO?AGUGLIARO F.Trends in plant research using molecular markers[J].Planta,2018,247(3):543-557. DOI:10.1007/s00425-017-2829-y.
48 PARCHMAN T L,JAHNER J P,UCKELE K A,et al.RADseq approaches and applications for forest tree genetics[J].Tree Genet Genomes,2018,14(3):1-25. DOI:10.1007/s11295-018-1251-3.
49 PAVY N,LAMOTHE M,PELGAS B,et al.A high?resolution reference genetic map positioning 8.8 K genes for the conifer white spruce:structural genomics implications and correspondence with physical distance[J].Plant J,2017,90(1):189-203. DOI:10.1111/tpj.13478.
50 NEALE D B,MARTíNEZ?GARCíA P J,DE LA TORRE A R,et al.Novel insights into tree biology and genome evolution as revealed through genomics[J].Annu Rev Plant Biol,2017,68:457-483. DOI:10.1146/annurev-arplant-042916-041049.
51 刘海琳,尹佟明.全基因组测序技术研究及其在木本植物中的应用[J].南京林业大学学报(自然科学版),2018,42(5):172-178.
51 LIU H L,YIN T M.Progress on the whole genome sequencing and the application in woody plants[J].J Nanjing For Univ (Nat Sci Ed),2018,42(5):172-178.
52 XIA W X,XIAO Z A,CAO P,et al.Construction of a high?density genetic map and its application for leaf shape QTL mapping in poplar[J].Planta,2018,248(5):1173-1185. DOI:10.1007/s00425-018-2958-y.
53 MIZRACHI E,VERBEKE L,CHRISTIE N,et al.Network?based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing[J].Proc Natl Acad Sci USA,2017,114(5):1195-1200. DOI:10.1073/pnas.1620119114.
54 SCAGLIONE D,PINOSIO S,MARRONI F,et al.Single primer enrichment technology as a tool for massive genotyping:a benchmark on black poplar and maize[J].Ann Bot,2019,124(4):543-551. DOI:10.1093/aob/mcz054.
55 LIU J J,SCHOETTLE A W,SNIEZKO R A,et al.Limber pine (Pinus flexilis James) genetic map constructed by exome?seq provides insight into the evolution of disease resistance and a genomic resource for genomics?based breeding[J].Plant J,2019,98(4):745-758. DOI:10.1111/tpj.14270.
56 SEMAGN K,BABU R,HEARNE S,et al.Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP):overview of the technology and its application in crop improvement[J].Mol Breed,2014,33(1):1-14. DOI:10.1007/s11032-013-9917-x.
57 LONG Y M,CHAO W S,MA G J,et al.An innovative SNP genotyping method adapting to multiple platforms and throughputs[J].Theor Appl Genet,2017,130(3):597-607. DOI:10.1007/s00122-016-2838-4.
58 JATAYEV S,KURISHBAYEV A,ZOTOVA L,et al.Advantages of Amplifluor?like SNP markers over KASP in plant genotyping[J].BMC Plant Biol,2017,17(2):83-93. DOI:10.1186/s12870-017-1197-x.
59 NEALE D B,KREMER A.Forest tree genomics:growing resources and applications[J].Nat Rev Genet,2011,12(2):111. DOI:10.1038/nrg2931.
60 RIBEIRO C L,SILVA C M,DROST D R,et al.Integration of genetic,genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus[J].BMC Plant Biol,2016,16(1):1-11. DOI:10.1186/s12870-016-0753-0.
61 ZHANG M M,BO W H,XU F,et al.The genetic architecture of shoot?root covariation during seedling emergence of a desert tree,Populus euphratica[J].Plant J,2017,90(5):918-928. DOI:10.1111/tpj.13518.
62 INDURI B R,ELLIS D R,SLAVOV G T,et al.Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus[J].Tree Physiol,2012,32(5):626-638. DOI:10.1093/treephys/tps032.
63 DU Q Z,GONG C R,WANG Q S,et al.Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies[J].New Phytol,2016,209(3):1067-1082. DOI:10.1111/nph.13695.
64 XU M,JIANG L B,ZHU S,et al.A computational framework for mapping the timing of vegetative phase change[J].New Phytol,2016,211(2):750-760. DOI:10.1111/nph.13907.
65 JIANG L B,YE M X,ZHU S,et al.Computational identification of genes modulating stem height?diameter allometry[J].Plant Biotechnol J,2016,14(12):2254-2264. DOI:10.1111/pbi.12579.
66 ZHIGUNOV A V,ULIANICH P S,LEBEDEVA M V,et al.Development of F1 hybrid population and the high?density linkage map for European aspen (Populus tremula L.) using RADseq technology[J].BMC Plant Biol,2017,17(1):1-12. DOI:10.1186/s12870-017-1127-y.
67 LIU J Y,YE M X,ZHU S,et al.Two?stage identification of SNP effects on dynamic poplar growth[J].Plant J,2018,93(2):286-296. DOI:10.1111/tpj.13777.
68 DU Q Z,YANG X H,XIE J B,et al.Time?specific and pleiotropic quantitative trait loci coordinately modulate stem growth in Populus[J].Plant Biotechnol J,2019,17(3):608-624. DOI:10.1111/pbi.13002.
69 TIAN J X,CHANG M Q,DU Q Z,et al.Single?nucleotide polymorphisms in PtoCesA7 and their association with growth and wood properties in Populus tomentosa[J].Mol Genet Genom,2014,289(3):439-455. DOI:10.1007/s00438-014-0824-6.
70 DU Q Z,TIAN J X,YANG X H,et al.Identification of additive,dominant,and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa[J].DNA Res,2015,22(1):53-67. DOI:10.1093/dnares/dsu040.
71 YANG X H,DU Q Z,CHEN J H,et al.Association mapping in Populus reveals the interaction between Pto?miR530a and its target Pto-KNAT1[J].Planta,2015,242(1):77-95. DOI:10.1007/s00425-015-2287-3.
72 YANG H J,YANG X H,WANG L X,et al.Single nucleotide polymorphisms in two GID1 orthologs associate with growth and wood property traits in Populus tomentosa[J].Tree Genet Genomes,2016,12(6):1-15. DOI:10.1007/s11295-016-1070-3.
73 CHEN J H,XIE J B,CHEN B B,et al.Genetic variations and miRNA?target interactions contribute to natural phenotypic variations in Populus[J].New Phytol,2016,212(1):150-160. DOI:10.1111/nph.14040.
74 FAHRENKROG A M,NEVES L G,RESENDE JR M F R,et al.Genome?wide association study reveals putative regulators of bioenergy traits in Populus deltoides[J].New Phytol,2017,213(2):799-811. DOI:10.1111/nph.14154.
75 CHEN B B,CHEN J H,DU Q Z,et al.Genetic variants in microRNA biogenesis genes as novel indicators for secondary growth in Populus[J].New Phytol,2018,219(4):1263-1282. DOI:10.1111/nph.15262.
76 QUAN M Y,XIAO L,LU W J,et al.Association genetics in Populus reveal the allelic interactions of pto?MIR167a and its targets in wood formation[J].Front Plant Sci,2018,9:744. DOI:10.3389/fpls.2018.00744.
77 QUAN M Y,DU Q Z,XIAO L,et al.Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus[J].Plant Biotechnol J,2019,17(1):302-315. DOI:10.1111/pbi.12978.
78 TIAN J X,SONG Y P,DU Q Z,et al.Population genomic analysis of gibberellin?responsive long non?coding RNAs in Populus[J].J Exp Bot,2016,67(8):2467-2482. DOI:10.1093/jxb/erw057.
79 XIE J B,TIAN J X,DU Q Z,et al.Association genetics and transcriptome analysis reveal a gibberellin?responsive pathway involved in regulating photosynthesis[J].J Exp Bot,2016,67(11):3325-3338. DOI:10.1093/jxb/erw151.
80 MCKOWN A D,GUY R D,QUAMME L,et al.Association genetics,geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade?offs[J].Mol Ecol,2014,23(23):5771-5790. DOI:10.1111/mec.12969.
81 MCKOWN A D,KLáP?Tě J,GUY R D,et al.Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa[J].New Phytol,2014,203(2):535-553. DOI:10.1111/nph.12815.
82 MCKOWN A D,GUY R D,KLáP?Tě J,et al.Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa[J].New Phytol,2014,201(4):1263-1276. DOI:10.1111/nph.12601.
83 FABBRINI F,GAUDET M,BASTIEN C,et al.Phenotypic plasticity,QTL mapping and genomic characterization of bud set in black poplar[J].BMC Plant Biol,2012,12(1):1-16. DOI:10.1186/1471-2229-12-47.
84 MONCLUS R,LEPLé J C,BASTIEN C,et al.Integrating genome annotation and QTL position to identify candidate genes for productivity,architecture and water?use efficiency in Populus spp[J].BMC Plant Biol,2012,12(1):1-15. DOI:10.1186/1471-2229-12-173.
85 CHHETRI H B,MACAYA?SANZ D,KAINER D,et al.Multitrait genome?wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits[J].New Phytol,2019,223(1):293-309. DOI:10.1111/nph.15777.
86 BRESADOLA L,CASEYS C,CASTIGLIONE S,et al.Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical,morphological and growth traits[EB/OL].bioRxiv,2018, DOI:10.1101/497685.
87 BDEIR R,MUCHERO W,YORDANOV Y,et al.Quantitative trait locus mapping of Populus bark features and stem diameter[J].BMC Plant Biol,2017,17(1):1-13. DOI:10.1186/s12870-017-1166-4.
88 BDEIR R,MUCHERO W,YORDANOV Y,et al.Genome?wide association studies of bark texture in Populus trichocarpa[J].Tree Genet Genomes,2019,15(1):1-14. DOI:10.1007/s11295-019-1320-2.
89 WEGRZYN J L,ECKERT A J,CHOI M,et al.Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa,Salicaceae) secondary xylem[J].New Phytol,2010,188(2):515-532. DOI:10.1111/j.1469-8137.2010.03415.x.
90 GUERRA F P,WEGRZYN J L,SYKES R,et al.Association genetics of chemical wood properties in black poplar (Populus nigra)[J].New Phytol,2013,197(1):162-176. DOI:10.1111/nph.12003.
91 PORTH I,KLAP?TE J,SKYBA O,et al.Genome?wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms[J].New Phytol,2013,200(3):710-726. DOI:10.1111/nph.12422.
92 PORTH I,KLáP?Tě J,SKYBA O,et al.Network analysis reveals the relationship among wood properties,gene expression levels and genotypes of natural Populus trichocarpa accessions[J].New Phytol,2013,200(3):727-742. DOI:10.1111/nph.12419.
93 MUCHERO W,GUO J J,DIFAZIO S P,et al.High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus[J].BMC Genom,2015,16(1):1-14. DOI:10.1186/s12864-015-1215-z.
94 PORTH I,KLáP?Tě J,MCKOWN A D,et al.Extensive functional pleiotropy of REVOLUTA substantiated through forward genetics[J].Plant Physiol,2014,164(2):548-554. DOI:10.1104/pp.113.228783.
95 BRESSON A,JORGE V,DOWKIW A,et al.Qualitative and quantitative resistances to leaf rust finely mapped within two nucleotide?binding site leucine?rich repeat (NBS?LRR)?rich genomic regions of chromosome 19 in poplar[J].New Phytol,2011,192(1):151-163. DOI:10.1111/j.1469-8137.2011.03786.x.
96 MANTIA JLA,KLáP?Tě J,EL?KASSABY Y A,et al.Association analysis identifies Melampsora × Columbiana poplar leaf rust resistance SNPs[J].PLoS One,2013,8(11):e78423. DOI:10.1371/journal.pone.0078423.
97 MUCHERO W,SONDRELI K L,CHEN J G,et al.Association mapping,transcriptomics,and transient expression identify candidate genes mediating plant–pathogen interactions in a tree[J].PNAS,2018,115(45):11573-11578. DOI:10.1073/pnas.1804428115.
98 LI Y,XU B H,DU Q Z,et al.Transcript abundance patterns of Populus C?repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress[J].Planta,2015,242(1):295-312. DOI:10.1007/s00425-015-2307-3.
99 LI Y,XU B H,DU Q Z,et al.Association genetics and expression patterns of a CBF4 homolog in Populus under abiotic stress[J].Mol Genet Genom,2015,290(3):913-928. DOI:10.1007/s00438-014-0967-5.
100 MENON M,BARNES W J,OLSON M S.Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season[J].New Phytol,2015,207(3):710-722. DOI:10.1111/nph.13381.
101 LINDTKE D,GONZáLEZ?MARTíNEZ S C,MACAYA?SANZ D,et al.Admixture mapping of quantitative traits in Populus hybrid zones:power and limitations[J].Heredity,2013,111(6):474. DOI:10.1038/hdy.2013.69.
102 DROST D R,PURANIK S,NOVAES E,et al.Genetical genomics of Populus leaf shape variation[J].BMC Plant Biol,2015,15(1):1-10. DOI:10.1186/s12870-015-0557-7.
103 CI D,SONG Y P,DU Q Z,et al.Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits[J].J Exp Bot,2016,67(3):723-737. DOI:10.1093/jxb/erv485.
104 XIAO L,LIU X,LU W J,et al.Genetic dissection of the gene coexpression network underlying photosynthesis in Populus[J].Plant Biotechnol J,2020,18(4):1015-1026. DOI:10.1111/pbi.13270.
105 ROHDE A,STORME V,JORGE V,et al.Bud set in poplar?genetic dissection of a complex trait in natural and hybrid populations[J].New Phytol,2011,189(1):106-121. DOI:10.1111/j.1469-8137.2010.03469.x.
106 MCKOWN A D,KLáP?Tě J,GUY R D,et al.Ecological genomics of variation in bud?break phenology and mechanisms of response to climate warming in Populus trichocarpa[J].New Phytol,2018,220(1):300-316. DOI:10.1111/nph.15273.
107 WANG J,DING J H,TAN B Y,et al.A major locus controls local adaptation and adaptive life history variation in a perennial plant[J].Genome Biol,2018,19(1):1-17. DOI:10.1186/s13059-018-1444-y.
108 LABBé J,JORGE V,KOHLER A,et al.Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents:Populus deltoides and Populus trichocarpa[J].Tree Genet Genomes,2011,7(3):617-627. DOI:10.1007/s11295-010-0361-3.
109 于晓丽,李发根,翁启杰,等.桉树扦插生根和生长性状的QTL定位[J].林业科学研究,2011,24(2):200-204.
109 YU X L,LI F G,WENG Q J,et al.Detection of quantitative trait loci related with rooting ability of cuttings and growth of Eucalyptus[J].For Res,2011,24(2):200-204. DOI:10.13275/j.cnki.lykxyj.2011.02.018.
110 BARTHOLOMé J,SALMON F,VIGNERON P,et al.Plasticity of primary and secondary growth dynamics in Eucalyptushybrids:a quantitative genetics and QTL mapping perspective[J].BMC Plant Biol,2013,13(1):1-14. DOI:10.1186/1471-2229-13-120.
111 宋志姣,翁启杰,周长品,等.细叶桉(Eucalyptus tereticornis)早期生长的SSR标记关联分析[J].分子植物育种,2016,14(1):195-203.
111 SONG Z J,WENG Q J,ZHOU C P,et al.SSR markers associated with early growth in Eucalyptus tereticornis[J].Mol Plant Breed,2016,14(1):195-203. DOI:10.13271/j.mpb.014.000195.
112 MüLLER B S F,DE ALMEIDA FILHO J E,LIMA B M,et al.Independent and Joint?GWAS for growth traits in Eucalyptus by assembling genome?wide data for 3373 individuals across four breeding populations[J].New Phytol,2019,221(2):818-833. DOI:10.1111/nph.15449.
113 BARTHOLOMé J,MABIALA A,SAVELLI B,et al.Genetic architecture of carbon isotope composition and growth in Eucalyptus across multiple environments[J].New Phytol,2015,206(4):1437-1449. DOI:10.1111/nph.13301.
114 尚秀华,张沛健,谢耀坚,等.赤桉抗风和生长性状的SSR关联分析[J].南京林业大学学报(自然科学版),2018,42(4):97-105.
114 SHANG X H,ZHANG P J,XIE Y J,et al.SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits[J].J Nanjing For Univ (Nat Sci Ed),2018,42(4):97-105.
115 AMMITZBOLL H,VAILLANCOURT R E,POTTS B M,et al.Independent genetic control of drought resistance,recovery,and growth of Eucalyptus globulus seedlings[J].Plant Cell Environ,2020,43(1):103-115. DOI:10.1111/pce.13649.
116 KAINER D,PADOVAN A,DEGENHARDT J,et al.High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus[J].New Phytol,2019,223(3):1489-1504. DOI:10.1111/nph.15887.
117 THAVAMANIKUMAR S,TIBBITS J,MCMANUS L,et al.Candidate gene?based association mapping of growth and wood quality traits in Eucalyptus globulus Labill[J].BMC Proc,2011,5(7):1-2. DOI:10.1186/1753-6561-5-S7-O15.
118 GION J M,CAROUCHé A,DEWEER S,et al.Comprehensive genetic dissection of wood properties in a widely?grown tropical tree:Eucalyptus[J].BMC Genom,2011,12(1):1-19. DOI:10.1186/1471-2164-12-301.
119 MANDROU E,HEIN P R G,VILLAR E,et al.A candidate gene for lignin composition in Eucalyptus:cinnamoyl?CoA reductase (CCR)[J].Tree Genet Genomes,2012,8(2):353-364. DOI:10.1007/s11295-011-0446-7.
120 KULLAN A R K,VAN DYK M M,HEFER C A,et al.Genetic dissection of growth,wood basic density and gene expression in interspecific backcrosses of Eucalyptus grandis and E.urophylla[J].BMC Genet,2012,13(1):1-12. DOI:10.1186/1471-2156-13-60.
121 FREEMAN J S,POTTS B M,DOWNES G M,et al.Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus[J].New Phytol,2013,198(4):1121-1134. DOI:10.1111/nph.12237.
122 DENIS M,FAVREAU B,UENO S,et al.Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla[J].Tree Genet Genomes,2013,9(4):927-942. DOI:10.1007/s11295-013-0606-z.
123 CAPPA E P,EL?KASSABY Y A,GARCIA M N,et al.Impacts of population structure and analytical models in genome?wide association studies of complex traits in forest trees:a case study in Eucalyptus globulus[J].PLoS One,2013,8(11):e81267. DOI:10.1371/journal.pone.0081267.
124 THAVAMANIKUMAR S,MCMANUS L J,ADES P K,et al.Association mapping for wood quality and growth traits in Eucalyptus globulus ssp.globulus Labill identifies nine stable marker?trait associations for seven traits[J].Tree Genet Genomes,2014,10(6):1661-1678. DOI:10.1007/s11295-014-0787-0.
125 LI F G,ZHOU C P,WENG Q J,et al.Comparative genomics analyses reveal extensive chromosome colinearity and novel quantitative trait loci in Eucalyptus[J].PLoS One,2015,10(12):e0145144. DOI:10.1371/journal.pone.0145144.
126 DILLON S K,BRAWNER J T,MEDER R,et al.Association genetics in Corymbia citriodora subsp.variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield[J].New Phytol,2012,195(3):596-608. DOI:10.1111/j.1469-8137.2012.04200.x.
127 RESENDE R T,RESENDE M D V,SILVA F F,et al.Regional heritability mapping and genome?wide association identify loci for complex growth,wood and disease resistance traits in Eucalyptus[J].New Phytol,2017,213(3):1287-1300. DOI:10.1111/nph.14266.
128 KLáP?Tě J,SUONTAMA M,TELFER E,et al.Exploration of genetic architecture through sib?ship reconstruction in advanced breeding population of Eucalyptus nitens[J].PLoS One,2017,12(9):e0185137. DOI:10.1371/journal.pone.0185137.
129 MARCO DE LIMA B,CAPPA E P,SILVA?JUNIOR O B,et al.Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near?infrared phenotyping and genome?wide SNP?based relationships[J].PLoS One,2019,14(6):e0218747. DOI:10.1371/journal.pone.0218747.
130 SEXTON T R,HENRY R J,HARWOOD C E,et al.Pectin Methylesterase genes influence solid wood properties of Eucalyptus pilularis[J].Plant Physiol,2012,158(1):531-541. DOI:10.1104/pp.111.181602.
131 MANDROU E,DENIS M,PLOMION C,et al.Nucleotide diversity in lignification genes and QTNs for lignin quality in a multi?parental population of Eucalyptus urophylla[J].Tree Genet Genomes,2014,10(5):1281-1290. DOI:10.1007/s11295-014-0760-y.
132 BUTLER J B,POTTS B M,VAILLANCOURT R E,et al.Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia[J].Tree Genet Genomes,2019,15(5):1-15. DOI:10.1007/s11295-019-1378-x.
133 ALVES A A,ROSADO C C G,FARIA D A,et al.Genetic mapping provides evidence for the role of additive and non?additive QTLs in the response of inter?specific hybrids of Eucalyptus to Puccinia psidii rust infection[J].Euphytica,2012,183(1):27-38. DOI:10.1007/s10681-011-0455-5.
134 BUTLER J B,FREEMAN J S,VAILLANCOURT R E,et al.Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii[J].Tree Genet Genomes,2016,12(3):1-13. DOI:10.1007/s11295-016-0987-x.
135 ZARPELON T G,SILVA GUIMAR?ES L M,FARIA D A,et al.Genetic mapping and validation of QTLs associated with resistance to Calonectria leaf blight caused by Calonectria pteridis in Eucalyptus[J].Tree Genet Genomes,2014,11(1):1-9. DOI:10.1007/s11295-014-0803-4.
136 ROSADO C C G,SILVA GUIMAR?ES L M,FARIA D A,et al.QTL mapping for resistance to Ceratocystis wilt in Eucalyptus[J].Tree Genet Genomes,2016,12(4):1-10. DOI:10.1007/s11295-016-1029-4.
137 ZHANG M M,ZHOU C P,SONG Z J,et al. The first identification of genomic loci in plants associated with resistance to galling insects:a case study in Eucalyptus L. (Myrtaceae)[J].Sci Rep,,8(1):2319. DOI:10.1038/s41598-018-20780-9.
138 BORTOLOTO T M,FUCHS?FERRAZ M C P,KETTENER K,et al.Identification of a molecular marker associated with lignotuber in Eucalyptus ssp[J].Sci Rep,2020,10:3608. DOI:10.1038/s41598-020-60308-8.
139 KüLHEIM C,YEOH S H,WALLIS I R,et al.The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus[J].New Phytol,2011,191(4):1041-1053. DOI:10.1111/j.1469-8137.2011.03769.x.
140 GOSNEY B J,POTTS B M,O'REILLY?WAPSTRA J M,et al.Genetic control of cuticular wax compounds in Eucalyptus globulus[J].New Phytol,2016,209(1):202-215. DOI:10.1111/nph.13600.
141 PADOVAN A,WEBB H,MAZANEC R,et al.Association genetics of essential oil traits in Eucalyptus loxophleba:explaining variation in oil yield[J].Mol Breed,2017,37(6):1-13. DOI:10.1007/s11032-017-0667-z.
142 CABEZAS J A,GONZáLEZ?MARTíNEZ S C,COLLADA C,et al.Nucleotide polymorphisms in a pine ortholog of the Arabidopsis degrading enzyme cellulase KORRIGAN are associated with early growth performance in Pinus pinaster[J].Tree Physiol,2015,35(9):1000-1006. DOI:10.1093/treephys/tpv050.
143 LI Y J,WILCOX P,TELFER E,et al.Association of single nucleotide polymorphisms with form traits in three New Zealand populations of radiata pine in the presence of genotype by environment interactions[J].Tree Genet Genomes,2016,12(4):1-12. DOI:10.1007/s11295-016-1019-6.
144 LU M M,KRUTOVSKY K V,NELSON C D,et al.Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole?exome?discovered polymorphisms[J].Tree Genet Genomes,2017,13(3):1-18. DOI:10.1007/s11295-017-1140-1.
145 LEPOITTEVIN C,HARVENGT L,PLOMION C,et al.Association mapping for growth,straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population[J].Tree Genet Genomes,2012,8(1):113-126. DOI:10.1007/s11295-011-0426-y.
146 CHHATRE V E,BYRAM T D,NEALE D B,et al.Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations[J].Tree Genet Genomes,2013,9(5):1161-1178. DOI:10.1007/s11295-013-0624-x.
147 CUMBIE W P,ECKERT A,WEGRZYN J,et al.Association genetics of carbon isotope discrimination,height and foliar nitrogen in a natural population of Pinus taeda L[J].Heredity,2011,107(2):105-114. DOI:10.1038/hdy.2010.168.
148 LIND B M,FRIEDLINE C J,WEGRZYN J L,et al.Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin,USA[J].Mol Ecol,2017,26(12):3168-3185. DOI:10.1111/mec.14106.
149 WESTBROOK J W,RESENDE JR M F R,MUNOZ P,et al.Association genetics of oleoresin flow in loblolly pine:discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential[J].New Phytol,2013,199(1):89-100. DOI:10.1111/nph.12240.
150 杨会肖,刘天颐,徐斌,等.火炬松生长和松脂性状相关候选基因的单核苷酸多样性分析[J].华南农业大学学报,2016,37(1):75-81.
150 YANG H X,LIU T Y,XU B,et al.Analysis of single nucleotide polymorphisms within candidate genes involved in growth and resin biosynthesis of loblolly pine[J].J South China Agric Univ,2016,37(1):75-81.
151 LIU J J,SCHOETTLE A W,SNIEZKO R A,et al.Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome?based SNP genotyping[J].BMC Genom,2016,17(1):1-12. DOI:10.1186/s12864-016-3079-2.
152 VáZQUEZ?LOBO A,DE LA TORRE A R,MARTíNEZ?GARCíA P J,et al.Finding loci associated to partial resistance to white pine blister rust in sugar pine (Pinus lambertiana Dougl.)[J].Tree Genet Genomes,2017,13(5):1-7. DOI:10.1007/s11295-017-1190-4.
153 HIRAO T,MATSUNAGA K,HIRAKAWA H,et al.Construction of genetic linkage map and identification of a novel major locus for resistance to pine wood nematode in Japanese black pine (Pinus thunbergii)[J].BMC Plant Biol,2019,19(1):1-13. DOI:10.1186/s12870-019-2045-y.
154 DE MIGUEL M,CABEZAS J A,DE MARíA N,et al.Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait.drought response:integration of genome annotation,allele association and QTL detection for candidate gene identification[J].BMC Genom,2014,15(1):464. DOI:10.1186/1471-2164-15-464.
155 RAWAT A,BARTHWAL S,GINWAL H S.Association mapping for resin yield in Pinus roxburghii Sarg.using microsatellite markers[J].Silvae Genet,2014,63(1/2/3/4/5/6):253-266. DOI:10.1515/sg-2014-0033.
156 WESTBROOK J W,WALKER A R,NEVES L G,et al.Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments,ages,and populations[J].New Phytol,2015,205(2):627-641. DOI:10.1111/nph.13074.
157 ECKERT A J,WEGRZYN J L,CUMBIE W P,et al.Association genetics of the loblolly pine (Pinus taeda,Pinaceae) metabolome[J].New Phytol,2012,193(4):890-902. DOI:10.1111/j.1469-8137.2011.03976.x.
158 LU M M,SEEVE C M,LOOPSTRA C A,et al.Exploring the genetic basis of gene transcript abundance and metabolite levels in loblolly pine (Pinus taeda L.) using association mapping and network construction[J].BMC Genet,2018,19(1):1-13. DOI:10.1186/s12863-018-0687-7.
159 AVIA K,K?RKK?INEN K,LAGERCRANTZ U,et al.Association of FLOWERING LOCUS T/TERMINAL FLOWER 1?like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris)[J].New Phytol,2014,204(1):159-170. DOI:10.1111/nph.12901.
160 PICULELL B J,JOSé MARTíNEZ?GARCíA P,NELSON C D,et al.Association mapping of ectomycorrhizal traits in loblolly pine (Pinus taeda L.)[J].Mol Ecol,2019,28(8):2088-2099. DOI:10.1111/mec.15013.
161 PORTH I,HAMBERGER B,WHITE R,et al.Defense mechanisms against herbivory in Picea:sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway[J].BMC Genom,2011,12(1):1-26. DOI:10.1186/1471-2164-12-608.
162 PORTH I,WHITE R,JAQUISH B,et al.Partial correlation analysis of transcriptomes helps detangle the growth and defense network in spruce[EB/OL].bioRxiv,2018, DOI:10.1101/247981.
163 LAMARA M,PARENT G J,GIGUèRE I,et al.Association genetics of acetophenone defence against spruce budworm in mature white spruce[J].BMC Plant Biol,2018,18(1):1-15. DOI:10.1186/s12870-018-1434-y.
164 PELGAS B,BOUSQUET J,MEIRMANS P G,et al.QTL mapping in white spruce:gene maps and genomic regions underlying adaptive traits across pedigrees,years and environments[J].BMC Genom,2011,12(1):1-23. DOI:10.1186/1471-2164-12-145.
165 PRUNIER J,PELGAS B,GAGNON F,et al.The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce[J].BMC Genom,2013,14(1):1-16. DOI:10.1186/1471-2164-14-368.
166 FUENTES-UTRILLA P,GOSWAMI C,COTTRELL J E,et al.QTL analysis and genomic selection using RADseq derived markers in Sitka spruce:the potential utility of within family data[J].Tree Genet Genomes,2017,13(2):1-12. DOI:10.1007/s11295-017-1118-z.
167 PRUNIER J,CARON S,LAMOTHE M,et al.Gene copy number variations in adaptive evolution:The genomic distribution of gene copy number variations revealed by genetic mapping and their adaptive role in an undomesticated species,white spruce (Picea glauca)[J].Mol Ecol,2017,26(21):5989-6001. DOI:10.1111/mec.14337.
168 BEAULIEU J,DOERKSEN T,BOYLE B,et al.Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression[J].Genetics,2011,188(1):197-214. DOI:10.1534/genetics.110.125781.
169 LAMARA M,RAHERISON E,LENZ P,et al.Genetic architecture of wood properties based on association analysis and co?expression networks in white spruce[J].New Phytol,2016,210(1):240-255. DOI:10.1111/nph.13762.
170 GANTHALER A,ST?GGL W,MAYR S,et al.Association genetics of phenolic needle compounds in Norway spruce with variable susceptibility to needle bladder rust[J].Plant Mol Biol,2017,94(3):229-251. DOI:10.1007/s11103-017-0589-5.
171 MUKRIMIN M,KOVALCHUK A,NEVES L G,et al.Genome?wide exon?capture approach identifies genetic variants of Norway spruce genes associated with susceptibility to Heterobasidion parviporum infection[J].Front Plant Sci,2018,9:793. DOI:10.3389/fpls.2018.00793.
172 ELFSTRAND M,BAISON J,LUNDéN K,et al.Association genetics identifies a specifically regulated Norway spruce laccase gene,PaLAC5,linked to Heterobasidion parviporum resistance[J].Plant Cell Environ,2020,43(7):1779-1791. DOI:10.1111/pce.13768.
173 CARLSON C H,GOUKER F E,CROWELL C R,et al.Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.)[J].Ann Bot,2019,124(4):701-715. DOI:10.1093/aob/mcz047.
174 BERLIN S,HALLINGB?CK H R,BEYER F,et al.Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years[J].Ann Bot,2017,120(1):87-100. DOI:10.1093/aob/mcx029.
175 HALLINGB?CK H R,BERLIN S,NORDH N E,et al.Genome wide associations of growth,phenology,and plasticity traits in willow Salix viminalis (L.)[J].Front Plant Sci,2019,10:753. DOI:10.3389/fpls.2019.00753.
176 LI W,WU H T,LI X P,et al.Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix[J].Hortic Res,,7(1):64. DOI:10.1038/s41438-020-0289-1.
177 BARTHOLOMé J,BRACHI B,MAR?AIS B,et al.The genetics of exapted resistance to two exotic pathogens in pedunculate oak[J].New Phytol,2020,226(4):1088-1103. DOI:10.1111/nph.16319.
178 GAILING O,BODéNèS C,FINKELDEY R,et al.Genetic mapping of EST?derived simple sequence repeats (EST?SSRs) to identify QTL for leaf morphological characters in a Quercus robur full?sib family[J].Tree Genet Genomes,2013,9(5):1361-1367. DOI:10.1007/s11295-013-0633-9.
179 MORI H,UENO S,UJINO-IHARA T,et al.Mapping quantitative trait loci for growth and wood property traits in Cryptomeria japonica across multiple environments[J].Tree Genet Genomes,2019,15(3):1-15. DOI:10.1007/s11295-019-1346-5.
180 MORIGUCHI Y,UENO S,SAITO M,et al.A simple allele specific PCR marker for identifying male?sterile trees:Towards DNA marker?assisted selection in the Cryptomeria japonica breeding program[J].Tree Genet Genomes,2014,10(4):1069-1077. DOI:10.1007/s11295-014-0743-z.
181 LU N,ZHANG M M,XIAO Y,et al.Construction of a high-density genetic map and QTL mapping of leaf traits and plant growth in an interspecific F1 population of Catalpa bungei ×Catalpa duclouxii Dode[J].BMC Plant Biol,2019,19(1):596. DOI:10.1186/s12870-019-2207-y.
182 VAISHNAV V,ANSARI S A.Detection of QTL (quantitative trait loci) associated with wood density by evaluating genetic structure and linkage disequilibrium of teak[J].J For Res,2019,30(6):2247-2258. DOI:10.1007/s11676-018-0751-1.
183 HEER K,BEHRINGER D,PIERMATTEI A,et al.Linking dendroecology and association genetics in natural populations:Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.)[J].Mol Ecol,2018,27(6):1428-1438. DOI:10.1111/mec.14538.
184 DU Q Z,LU W J,QUAN M Y,et al.Genome?wide association studies to improve wood properties:challenges and prospects[J].Front Plant Sci,2018,9:1912. DOI:10.3389/fpls.2018.01912.
185 SUONTAMA M,KLáP?Tě J,TELFER E,et al.Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories[J].Heredity,2019,122(3):370. DOI:10.1038/s41437-018-0119-5.
186 KLáP?Tě J,SUONTAMA M,DUNGEY H S,et al.Effect of hidden relatedness on single?step genetic evaluation in an advanced open?pollinated breeding program[J].J Hered,2018,109(7):802-810. DOI:10.1093/jhered/esy051.
187 ALVES R S,JO?O ROMERO DO AMARAL SANTOS ROCHA,TEODORO P E,et al.Multiple?trait BLUP:a suitable strategy for genetic selection of Eucalyptus[J].Tree Genet Genomes,2018,14(5):1-8. DOI:10.1007/s11295-018-1292-7.
188 CAPPA E P,DE LIMA B M,BDAJr SILVA? O ,et al.Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non?genotyped trees by single?step GBLUP[J].Plant Sci,2019,284:9-15. DOI:10.1016/j.plantsci.2019.03.017.
189 BOUVET J M,MAKOUANZI EKOMONO C G,BRENDEL O,et al.Selecting for water use efficiency,wood chemical traits and biomass with genomic selection in a Eucalyptus breeding program[J].For Ecol Manag,2020,465:118092. DOI:10.1016/j.foreco.2020.118092.
190 LI Y J,KLáP?Tě J,TELFER E,et al.Genomic selection for non?key traits in radiata pine when the documented pedigree is corrected using DNA marker information[J].BMC Genom,2019,20(1):1026. DOI:10.1186/s12864-019-6420-8.
191 UKRAINETZ N K,MANSFIELD S D.Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models[J].Tree Genet Genomes,2019,16(1):1-19. DOI:10.1007/s11295-019-1404-z.
192 CHEN Z Q,BAISON J,PAN J,et al.Increased prediction ability in Norway spruce trials using a marker x environment interaction and non?additive genomic selection model[EB/OL].bioRxiv,2018, DOI:10.1101/478404.
193 LENZ P R N,NADEAU S,AZAIEZ A,et al.Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs:an example from white spruce[J].Heredity,2020,124(4):562. DOI:10.1038/s41437-019-0290-3.
194 CHAMBERLAND V,ROBICHAUD F,PERRON M,et al.Conventional versus genomic selection for white spruce improvement:a comparison of costs and benefits of plantations on Quebec public lands[J].Tree Genet Genomes,2020,16(1):1-16. DOI:10.1007/s11295-019-1409-7.
195 THISTLETHWAITE F R,RATCLIFFE B,KLáP?Tě J,et al.Genomic selection of juvenile height across a single?generational gap in Douglas?fir[J].Heredity,2019,122(6):848. DOI:10.1038/s41437-018-0172-0.
196 HA J,SHIM S,LEE T,et al.Genome sequence of Jatropha curcas L.,a non-edible biodiesel plant,provides a resource to improve seed-related traits[J].Plant Biotechnol J,2019,17(2):517-530. DOI:10.1111/pbi.12995.
197 TRAN H T M,RAMARAJ T,FURTADO A,et al.Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content[J].Plant Biotechnol J,2018,16(10):1756-1766. DOI:10.1111/pbi.12912.
198 WU P Z,ZHOU C P,CHENG S F,et al.Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.),a biodiesel plant[J].Plant J,2015,81(5):810-821. DOI:10.1111/tpj.12761.
199 CHEN J,HAO Z,GUANG X M,et al.Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation[J].Nat Plants,2019,5(1):18. DOI:10.1038/s41477-018-0323-6.
200 CHEN Y C,LI Z,ZHAO Y X,et al.The Litsea genome and the evolution of the laurel family[J].Nat Commun,2020,11:1675. DOI:10.1038/s41467-020-15493-5.
201 ZHANG B Y,ZHU W X,DIAO S,et al.The poplar pangenome provides insights into the evolutionary history of the genus[J].Commun Biol,,2(1):215. DOI:10.1038/s42003-019-0474-7.
202 KUZMIN D A,FERANCHUK S I,SHAROV V V,et al.Stepwise large genome assembly approach:a case of Siberian larch (Larix sibirica Ledeb)[J].BMC Bioinform,2019,20(1):35-46. DOI:10.1186/s12859-018-2570-y.
203 ZHANG J,XIE M,TUSKAN G A,et al.Recent advances in the transcriptional regulation of secondary cell wall biosynthesis in the woody plants[J].Front Plant Sci,2018,9:1535. DOI:10.3389/fpls.2018.01535.
204 NAGLE M,DéJARDIN A,PILATE G,et al.Corrigendum:opportunities for innovation in genetic transformation of forest trees[J].Front Plant Sci,2018,9:1443. DOI:10.3389/fpls.2018.01443.
205 CHANG S J,MAHON E L,MACKAY H A,et al.Genetic engineering of trees:progress and new horizons[J].Vitro Cell Dev Biol?Plant,2018,54(4):341-376. DOI:10.1007/s11627-018-9914-1.
206 CHANOCA A,DE VRIES L,BOERJAN W.Lignin engineering in forest trees[J].Front Plant Sci,2019,10:912. DOI:10.3389/fpls.2019.00912.
207 BEWG W P,CI D,TSAI C J.Genome editing in trees:from multiple repair pathways to long?term stability[J].Front Plant Sci,2018,9:1732. DOI:10.3389/fpls.2018.01732.
208 HESLOT N,JANNINK J L,SORRELLS M E.Perspectives for genomic selection applications and research in plants[J].Crop Sci,2015,55(1):1-12. DOI:10.2135/cropsci2014.03.0249.
209 ZHANG X H,HUANG C L,WU D,et al.High?throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth[J].Plant Physiol,2017,173(3):1554-1564. DOI:10.1104/pp.16.01516.
210 MAZIS A,CHOUDHURY S D,MORGAN P B,et al.Application of high-throughput plant phenotyping for assessing biophysical traits and drought response in two oak species under controlled environment[J].For Ecol Manag,2020,465:118101. DOI:10.1016/j.foreco.2020.118101.
211 DUNGEY H S,DASH J P,PONT D,et al.Phenotyping whole forests will help to track genetic performance[J].Trends Plant Sci,2018,23(10):854-864. DOI:10.1016/j.tplants. 2018.08.005.
212 DANILEVICZ M F,GTAY FERNANDEZ C,MARSH J I,et al.Plant pangenomics:approaches,applications and advancements[J].Curr Opin Plant Biol,2020,54:18-25. DOI:10.1016/j.pbi.2019.12.005.
213 LU F,ROMAY M C,GLAUBITZ J C,et al.High?resolution genetic mapping of maize pan?genome sequence anchors[J].Nat Commun,,6(1):6914. DOI:10.1038/ncomms7914.
214 EATHINGTON S R, CROSBIE T M, EDWARDS M D, et al. Molecular markers in a commercial breeding program [J]. Crop Science, 2007, 47(S3): S154–S163. DOI:10.2135/cropsci2007.04.0015IPBS.
PDF(2049 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/