JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2015, Vol. 39 ›› Issue (03): 149-155.doi: 10.3969/j.issn.1000-2006.2015.03.027
Previous Articles Next Articles
ZHAO Chao1,2, PENG Sai1,2, RUAN Honghua1,2*, ZHANG Yakun1,2
Online:
2015-05-30
Published:
2015-05-30
CLC Number:
ZHAO Chao, PENG Sai, RUAN Honghua, ZHANG Yakun. Effects of nitrogen deposition on soil microbes[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(03): 149-155.
[1] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. [2] Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth’s nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. [3] Lamarque J F, Kiehl J T, Brasseur G P, et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition[J]. Journal of Geophysical Research:Atmospheres(1984-2012), 2005, 110(D19303):1-21. [4] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. [5] Aber J D, Nadelhoffer K J, Steudler P, et al. Nitrogen saturation in northern forest ecosystems[J]. BioScience, 1989, 39(6): 378-386. [6] Eisenlord S D, Freedman, Zak D R, et al. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition[J]. Applied and Environmental Microbiology, 2013, 79(4): 1191-1199. [7] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007, 31(2): 252-261.Zhang N L, Guo J X, Wang X Y,et al. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology, 2007, 31(2): 252-261. [8] Treseder K K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies[J]. Ecology Letters, 2008, 11(10): 1111-1120. [9] Liu L, Greaver T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828. [10] Li L J, Zeng D H, Yu Z Y, et al. Soil microbial properties under N and P additions in a semi-arid, sandy grassland[J]. Biology and Fertility of Soils, 2010, 46(6): 653-658. [11] 王晖, 莫江明, 鲁显楷, 等. 南亚热带森林土壤微生物量碳对氮沉降的响应[J]. 生态学报, 2008, 28(2): 470-478.Wang H, Mo J M, LU X K,et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in the main subtropical forests of southern China[J]. Acta Ecologica Sinica, 2008, 28(2): 470-478. [12] 周薇, 王兵, 李钢铁. 大气氮沉降对森林生态系统影响的研究进展[J]. 中央民族大学学报:自然科学版, 2010(1):34-40. Zhou W, Wang B, Li G T. Progress on the impact of atmospheric nitrogen deposition on forest ecosystems[J]. Journal of MUC:Natural Sciences Edition, 2010(1): 34-40. [13] Lu X K, Mo J M, Gundersern P, et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China[J]. Pedosphere, 2009, 19(2): 189-198. [14] Baath E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biology and Biochemistry, 2003, 35(7):955-963. [15] Aciego Pietriy J C, Brookes P. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry, 2008, 40(7): 1856-1861. [16] Liu W, Jiang L, Hu S J, et al. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe[J]. Soil Biology and Biochemistry, 2014, 72: 116-1122. [17] Currey P M, Johnson D, Dawson L A, et al. Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vulgaris and Eriophorum vaginatum[J]. Soil Biology and Biochemistry, 2011, 43(3): 495-502. [18] Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests[J]. Soil Science Society of America Journal, 2004, 68(1): 132-138. [19] Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. [20] Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J]. Soil Biology and Biochemistry, 2004, 36(6): 965-971. [21] Compton J E, Watrud L S, Arlene Porteous L, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest[J]. Forest Ecology and Management, 2004, 196(1): 143-158. [22] Strickland M S, Rousk J. Considering fungal: bacterial dominance in soils-Methods, controls, and ecosystem implications[J]. Soil Biology and Biochemistry, 2010, 42(9): 1385-1395. [23] Demoling F, Nilsson L O, B??th E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils[J]. Soil Biology and Biochemistry, 2008, 40(2): 370-379. [24] Rousk J, Brookes P C, B??th E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment[J]. FEMS Microbiology Ecology, 2011, 76(1): 89-99. [25] Allison S D, Czimczik C I, Treseder K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J]. Global Change Biology, 2008, 14(5): 1156-1168. [26] H?gberg M N, Briones M J I, Keel S G, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest[J]. New Phytologist, 2010, 187(2): 485-493. [27] 薛璟花, 莫江明, 李炯, 等. 氮沉降对外生菌根真菌的影响[J]. 生态学报, 2004(8): 1789-1796. Xue J H, Mo J M, Li J,et al. Effects of nitrogen deposition on ectomycorrhizal fungi [J]. Acta Ecologica Sinica, 2004(8): 1789-1796. [28] Van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Simulated nitrogen deposition causes a decline of intra-and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in Northern Hardwood forests[J]. Ecosystems, 2010, 13(5): 683-695. [29] 曹志平, 李德鹏, 韩雪梅. 土壤食物网中的真菌/细菌比率及测定方法[J]. 生态学报, 2011, 31(16): 4741-4748. Cao Z P, Li D P, Han X M. The fungal to bacterial ratio in soil food webs, and its measurement[J]. Acta Ecologica Sinica, 2011, 31(16): 4741-4748. [30] Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments[J]. Forest Ecology and Management, 2006, 222(1-3): 459-468. [31] Ramirez K S, Craine J M, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6): 1918-1927. [32] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies[J]. New Phytologist, 2004, 164(2): 347-355. [33] Kj?ller R, Nilsson L O, Hansen K, et al. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient[J]. New Phytologist, 2012, 194(1): 278-286. [34] Lilleskov E A, Hobbie E A, Horton T R. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition[J]. Fungal Ecology, 2011, 4(2): 174-183. [35] Cox F, Barsoum N, Lilleskov E A, et al. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients[J]. Ecology Letters, 2010, 13(9): 1103-1113. [36] Lucas R W, Casper B B. Ectomycorrhizal community and extracellular enzyme activity following simulated atmospheric N deposition[J]. Soil Biology and Biochemistry, 2008, 40(7): 1662-1669. [37] Avis P G, Mueller G M, Lussenhop J. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition[J]. New Phytologist, 2008, 179(2): 472-483. [38] Jarvis S, Woodward S, Alexander I, et al. Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine[J]. Global Change Biology, 2013, 19(6): 1688-1696. [39] Pardo L H, Fenn M E, Goodale C L, et al. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States[J]. Ecological Applications, 2011, 21(8): 3049-3082. [40] Jumpponen A, Trowbridge J, Mandyam K, et al. Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition-evidence from rDNA data[J]. Biology and Fertility of Soils, 2005, 41(4):217-224. [41] Santos J C, Finlay R D, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient[J]. New Phytologist, 2006, 172(1): 159-168. [42] van Diepen L T A, Entwistle E M, Zak D R. Chronic nitrogen deposition and the composition of active arbuscular mycorrhizal fungi[J]. Applied Soil Ecology, 2013, 72: 62-68. [43] van Diepen L T A, Lilleskov E A, Pregitzer K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests[J]. Molecular Ecology, 2011, 20(4): 799-811. [44] Porras-Alfaro A, Herrera J, Natvig D O, et al. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland[J]. Plant and Soil, 2007, 296(1-2): 65-75. [45] Allison S D, Hanson C A, Treseder K K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems[J]. Soil Biology and Biochemistry, 2007, 39(8): 1878-1887. [46] Blackwood C B, Waldrop M P, Zak D R, et al. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition[J]. Environmental Microbiology, 2007, 9(5):1306-1316. [47] Zak D R, Holmes W E, Burton A J, et al. Simulated atmospheric NO-3 deposition in crease soil organic matter by showing decomposition[J]. Ecological Application, 2008, 18(8):2016-2027. [48] Entwistle E M, Zak D R, Edwards I P. Long-term experimental nitrogen deposition alters the composition of the active fungal community in the forest floor[J]. Soil Science Society of America Journal, 2013, 77(5): 1648-1658. [49] Ramirez K S, Lauber C L, Knight R, et al. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems[J]. Ecology, 2010, 91(12): 3463-3470. [50] Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2011, 6(5): 1007-1017. [51] Campbell B J, Polson S W, Hanson T E, et al. The effect of nutrient deposition on bacterial communities in Arctic tundra soil[J]. Environmental Microbiology, 2010, 12(7): 1842-1854. [52] Zechmeister-Boltenstern S, Michel K, Pfeffer M. Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition[J]. Plant and Soil, 2011, 343(1-2): 37-50. [53] Blako R, H?gberg P, Bach L H, et al. Relations among soil microbial community composition, nitrogen turnover, and tree growth in N-loaded and previously N-loaded boreal spruce forest[J]. Forest Ecology and Management, 2013, 302: 319-328. [54] Grogan D W, Cronan J E. Cyclopropane ring formation in membrane lipids of bacteria[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 429-441. [55] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 31(2): 205-218.Lu C Q, Tian H Q, Huan Y. Ecological effects of increased nitrogen deposition interrestrial ecosystems[J]. Journal of Plant Ecology, 2007, 31(2): 205-218. [56] Eisenlord S D,Zak D R.Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils[J].Soil Science Society of America Journal, 2010, 74(4): 1157-1166. [57] Nemergut D R, Townsend A R, Sattin S R, et al. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling[J]. Environmental Microbiology, 2008, 10(11): 3093-3105. [58] Freedman Z, Eisenlord S D, Zak D R, et al. Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition[J]. Soil Biology and Biochemistry, 2013, 66: 130-138. [59] 黄玉梓, 樊后保, 李燕燕, 等. 氮沉降对杉木人工林生长及林下植被碳库的影响[J]. 生态环境学报, 2009(4): 1407-1412. Huang Y Z, Fan H B, Li Y Y. et al. Effects of nitrogen deposition on tree growth and understory carbon pools in Chinese fir plantation[J]. Ecology and Environmental Sciences, 2009(4): 1407-1412. [60] 张徐源, 闫文德, 马秀红, 等. 模拟氮沉降对樟树人工林土壤呼吸的短期效应[J]. 中南林业科技大学学报, 2012, 32(3): 109-113. Zhang X Y, Yan W D, Ma X H, et al. Short-term effects of nitrogen deposition on soil respiration of Cinnamomum camphora plantation[J]. Journal of Central South University of Forestry & Technology, 2012, 32(3): 109-113. [61] 涂利华, 戴洪忠, 胡庭兴等. 模拟氮沉降对华西雨屏区撑绿杂交竹林土壤呼吸的影响[J]. 应用生态学报, 2011, 22(4): 829-836. Tu L H, Dai H Z, Hu T X,et al.Effects of simulated nitrogen deposition on soil respiration in a Bambusa pervariabilis×Dendrocala mopsi plantation in rainy area of west China[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 829-836. [62] 刘盛梅, 姜清成, 李芸. 华西雨屏区巨桉中龄林土壤呼吸对模拟氮沉降的响应[J]. 四川林业科技, 2010, 31(3):60-64. Liu S M, Jiang Q C, Li Y. Response of soil respiration to simulated nitrogen deposition under the middle-aged eucalyptus grandis plantation in Ya’an city[J]. Journal of Sichuan Forestry Science and Technology, 2010, 31(3): 60-64. [63] 井艳丽, 袁凤辉. 氮沉降对土壤呼吸影响研究进展[J]. 世界林业研究, 2013, 26(4): 25-31. Jing Y L, Yuan F H. Research advances on responses of soil respiration to nitrogen deposition[J]. World Forestry Research, 2013, 26(4): 25-31. [64] Hasselquist N J, Metcalfe D B, H?gberg P. Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest[J]. Global Change Biology, 2012, 18(12): 3596-3605. [65] 张晶, 张惠文, 李新宇, 等. 土壤微生物生态过程与微生物功能基因多样性[J]. 应用生态学报, 2006, 17(6):1129-1132. Zhang J, Zhang H W, Li X Y, et al. Soil microbial ecological process and microbial functional gene diversity[J].Chinese Journal of Applied Ecology, 2006, 17(6): 1129-1132. [66] Edwards I P, Zak D R, Kellner H, et al. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest[J]. PLoS One, 2011, 6(6): e20421. [67] Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity[J]. Ecological Applications, 2004, 14(4): 1172-1177. [68] Hu Y L, Jung K, Zeng D H, et al. Nitrogen-and sulfur-deposition altered soil microbial community functions and enzyme activities in a boreal mixedwood forest in western Canada[J]. Canadian Journal of Forest Research, 2013, 43(9): 777-784. [69] 袁颖红, 樊后保, 刘文飞, 等. 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响[J]. 土壤, 2013,45(1): 120-128. Yan Y H, Fan H B, Liu W F.et al. Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation[J]. Soils, 2013,45(1): 120-128. [70] 刘蔚秋, 刘滨扬, 王江, 等. 不同环境条件下土壤微生物对模拟大气氮沉降的响应[J]. 生态学报, 2010,30(7): 1691-1698.Liu W Q, Liu B Y, Wang J,et al. Responses of soil microbial communities to moss cover and nitrogen addition[J]. Acta Ecologica Sinica, 2010,30(7): 1691-1698. [71] Zhou X B, Zhang Y M, Downing A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China[J]. Soil Biology and Biochemistry, 2012, 47: 67-77. [72] Weand M P, Arthur M A, Lovett G M, et al. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities[J]. Soil Biology and Biochemistry, 2010, 42(12): 2161-2173. [73] Rossi S, Bordeleau A, Morin H, et al. The effects of N-enriched rain and warmer soil on the ectomycorrhizae of black spruce remain inconclusive in the short term[J]. Annals of Forest Science, 2013, 70(8): 825-834. [74] Aber J D, Magill A H. Chronic nitrogen additions at the Harvard Forest(USA): the first 15 years of a nitrogen saturation experiment[J]. Forest Ecology and Management, 2004, 196(1): 1-5. |
[1] | WU Yan, HUANG Qing, LIU Xun, ZHENG Rui, CEN Jiabao, DING Bo, ZHANG Yunlin, FU Yuhong. Effects of Pinus massoniana plantation age on soil physical and chemical properties in Karst areas in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 99-107. |
[2] | LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 67-73. |
[3] | XING Bingbing, LI Yao, MAO Lingfeng. Taxonomic and geographic differentiation of phylogenetic conservatism of plant functional traits: a case study of maximum plant height of Chinese angiosperms [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 59-66. |
[4] | SA Rula, WANG Zirui, HUA Yongchun, HU Richa, LIU Lei, GAO Minglong, YU Xiaoyu. Evaluating forest ecosystem restoration ability of natural forest in northern Greater Khingan Mountains by a structural equation model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 196-204. |
[5] | LU Wenyan, DONG Lingbo, TIAN Yuan, WANG Shashan, QU Xuanyi, WEI Wei, LIU Zhaogang. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 157-165. |
[6] | SONG Ge, HAN Fang, XU Jingwei, YANG Zhijun, MU Haoxiang, WANG Zhiyong, WANG Zhe. Distribution suitability analysis of the tree species of shelter forest in coastal area of Shandong based on LandUSEM model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 42-50. |
[7] | ZOU Pengjun, GUAN Qingwei, YUAN Zaixiang, GU Yuqing, WU Qian, NIU Yingying, CHEN Xia, JIN Xuemei. The population structure and dynamics of Liquidambar formosana on the southeast foothill of Zijin Mountain, Nanjing City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 157-163. |
[8] | SUN Meijia, ZHOU Zhiyong, WANG Yongqiang, SHEN Ying, XIA Wei. The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 67-75. |
[9] | YAO Nan, LIU Guangquan, YAO Shunbo, JIA Lei, LIN Ying, DENG Yuanjie, HOU Mengyang. Analysis of carbon sequestration effect of sloping land conversion program in Loess Plateau from the perspective of slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 180-188. |
[10] | WANG Qisong, GUO Qingxi. The spatial distribution characteristics of light intensity attenuation under natural secondary forests in eastern Jilin Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 101-108. |
[11] | ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 167-176. |
[12] | XU Chen, RUAN Honghua, WU Xiaoqiao, XIE Youchao, YANG Yan. Progresses in drought stress on the accumulation and turnover of soil organic carbon in forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 195-206. |
[13] | ZHANG Ruiting, YANG Jinyan, RUAN Honghua. Meta-analyses of responses of sap flow to changes in environmental factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 113-120. |
[14] | LI Linke, WANG Yinuo, XUE Xiao, ZHANG Wen, WU Jiaojiao, GAO Lan, TAN Xing, RONG Xingyu, DUAN Rurong, LIU Yun. Response of Cotinus coggygria photosynthesis and coloration to weather change in Chongqing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 95-103. |
[15] | XIA Jie, CHEN Sheng, WU Yifan, ZHANG Wei, XIE Jinzhong. Dynamic changes of soil microbial biomass and microbial entropy after planting Dictyophora indusiata in Phyllostachys edulis forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 127-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||