JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (04): 169-177.doi: 10.3969/j.issn.1000-2006.201806030
Previous Articles Next Articles
SONG Jinfeng1, RU Jiaxin1, ZHANG Hongguang2, CAO Kai3, CUI Xiaoyang1*
Online:
2019-07-22
Published:
2019-07-22
CLC Number:
SONG Jinfeng, RU Jiaxin, ZHANG Hongguang, CAO Kai, CUI Xiaoyang. Research progress on lichens, lichenic acids, rock and mineral weathering and its mechanisms[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 169-177.
[1] 吴秋芳, 胡海波, 张鑫. 黑曲霉及其代谢产物对花岗岩风化作用的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(1): 81-88. DOI:10.3969/j.issn.1000-2006.201610049. WU Q F, HU H B, ZHANG X. Effect of Aspergillus niger and its metabolites on weathering of granite[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(1): 81-88. [2] 严君, 韩晓增, 王树起, 等. 不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(2): 341-347. YAN J, HAN X Z, WANG S Q, et al. Effects of different nitrogen forms on microbial quantity and enzymes activities in soybean field[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 341-347. [3] PAYETTE S, DELWAIDE A. Tamm review: the North-American lichen woodland[J]. Forest Ecology and Management, 2018, 417: 167-183. DOI:10.1016/j.foreco.2018.02.043. [4] MARQUES J, GONCALVES J, OLIVEIRA C, et al. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments[J]. Ecology, 2016, 97(10): 2844-2857. DOI:10.1002/ecy.1525. [5] RIVAS T, POZO-ANTONIO J S, LóPEZ DE SILANES M E, et al. Laser versus scalpel cleaning of crustose lichens on granite[J]. Applied Surface Science, 2018, 440: 467-476. DOI:10.1016/j.apsusc.2018.01.167. [6] HOFFLAND E, KUYPER T W, WALLANDER H, et al. The role of Fungi in weathering[J]. Frontiers in Ecology and the Environment, 2004, 2(5): 258. DOI:10.2307/3868266 [7] FAVERO-LONGO S E, GIRLANDA M, HONEGGER R, et al. Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres[J]. Mycological Research, 2007, 111(4): 473-481. DOI:10.1016/j.mycres.2007.01.013. [8] SCARCIGLIA F, SAPORITO N, LA RUSSA M F, et al. Role of lichens in weathering of granodiorite in the Sila uplands(Calabria, southern Italy)[J]. Sedimentary Geology, 2012, 280: 119-134. DOI:10.1016/j.sedgeo.2012.05.018. [9] LáZARO R, CANTóN Y, SOLé-BENET A, et al. The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands(SE Spain)and its landscape effects[J]. Geomorphology, 2008, 102(2): 252-266. DOI:10.1016/j.geomorph.2008.05.005. [10] 杨琳璐, 王中生, 周灵燕, 等. 苔藓和地衣对环境变化的响应和指示作用[J]. 南京林业大学学报(自然科学版), 2012, 36(3): 137-143. DOI:10.3969/j.issn.1000-2006.2012.03.028. YANG L L, WANG Z S, ZHOU L Y, et al. Response and bioindicator of bryophyte and lichen as cryptogamae plants to environmental change[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2012, 36(3): 137-143. [11] 李莎, 李福春, 程良娟. 生物风化作用研究进展[J]. 矿产与地质, 2006, 20(6): 577-582. DOI:10.3969/j.issn.1001-5663.2006.06.001. LI S, LI F C, CHENG L J. Recent development in bio-weathering research[J]. Mineral Resources and Geology, 2006, 20(6): 577-582. [12] 范海兰, 谢安强, 申超, 等. 短葶山麦冬内生真菌分离鉴定及抗氧化活性[J]. 北华大学学报(自然科学版), 2017, 18(1): 106-109. DOI:10.11713/j.issn.1009-4822.2017.01.025. FAN H L, XIE A Q, SHEN C, et al. Isolation, identification and oxidant activity of endophytic Fungi from Liriope muscari (Decne.)bailey[J]. Journal of Beihua University(Natural Science), 2017, 18(1): 106-109. [12] FISK M R, POPA R, MASON O U, et al. Iron-magnesium silicate bioweathering on earth(and mars?)[J]. Astrobiology, 2006, 6(1): 48-68. DOI:10.1089/ast.2006.6.48. [14] HOFFLAND E, GIESLER R, VAN BREEMEN N, et al. Feldspar tunneling by Fungi along natural productivity gradients[J]. Ecosystems, 2003, 6(8): 739-746. DOI:10.1007/s10021-003-0191-3. [15] VINGIANI S, TERRIBILE F, ADAMO P. Weathering and particle entrapment at the rock-lichen interface in Italian volcanic environments[J]. Geoderma, 2013, 207/208: 244-255. DOI:10.1016/j.geoderma.2013.05.015. [16] BEHERA B C, VERMA N, SONONE A, et al. Experimental studies on the growth and usnic acid production in “lichen” Usnea ghattensis in vitro[J]. Microbiological Research, 2006, 161(3): 232-237. DOI:10.1016/j.micres.2005.08.006. [17] KOCH N M, DE AZEVEDO MARTINS S M, LUCHETA F, et al. Functional diversity and traits assembly patterns of lichens as indicators of successional stages in a tropical rainforest[J]. Ecological Indicators, 2013, 34: 22-30. DOI:10.1016/j.ecolind.2013.04.012. [18] VANNINI A, CONTARDO T, PAOLI L C, et al. Application of commercial biocides to lichens: Does a physiological recovery occur over time?[J]. International Biodeterioration & Biodegradation, 2018, 129: 189-194. DOI:10.1016/j.ibiod.2018.02.010. [19] 陈杰, 龚子同, HANS P B, 等. 地衣对建筑物的生物破坏作用[J]. 环境污染治理技术与设备, 2000, 1(1): 65-74. DOI:10.3969/j.issn.1673-9108.2000.01.012. CHEN J, GONG Z T, HANS P B, et al. Biodeterioration of constructions induced by lichens[J]. Techniques and Equipments for Environmental Pollution Control, 2000, 1(1): 65-74. DOI:10.3969/j.issn.1673-9108.2000.01.012. [20] JACKSON T A. Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment[J]. Geoderma, 2015, 251/252: 78-91. DOI:10.1016/j.geoderma.2015.03.012 [21] ZAMBELL C B, ADAMS J M, GORRING M L, et al. Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous elemental flux[J]. Chemical Geology, 2012, 291: 166-174. DOI:10.1016/j.chemgeo.2011.10.009. [22] GADD G M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by Fungi, bioweathering and bioremediation[J]. Mycological Research, 2007, 111(1): 3-49. DOI:10.1016/j.mycres.2006.12.001. [23] MCILROY DE LA ROSA J P, WARKE P A, SMITH B J. The effects of lichen cover upon the rate of solutional weathering of limestone[J]. Geomorphology, 2014, 220: 81-92. DOI:10.1016/j.geomorph.2014.05.030. [24] 孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2006. SUN X Y. Soil science[M]. Beijing: China Forestry Publishing House, 2006. [25] CHEN J, GONG Z T. Role of lichens in weathering and soil-forming processes in fildes peninsula, Antarctic[J]. Pedosphere, 1995, 5: 305-314. [26] VARADACHARI C, BARMAN A K, GHOSH K. Weathering of silicate minerals by organic acids II. Nature of residual products[J]. Geoderma, 1994, 61(3/4): 251-268. DOI:10.1016/0016-7061(94)90052-3. [27] WIERZCHOS J. Morphological and chemical features of bioweathered granitic biotite induced by lichen activity[J]. Clays and Clay Minerals, 1996, 44(5): 652-657. DOI:10.1346/ccmn.1996.0440507. [28] STRETCH R C, VILES H A. The nature and rate of weathering by lichens on lava flows on Lanzarote[J]. Geomorphology, 2002, 47(1): 87-94. DOI:10.1016/s0169-555x(02)00143-5. [29] 李波, 林中文, 孙汉董. 四种国产地衣的化学成分[J]. 云南植物研究, 1991,13(1): 81-84. LI B, LIN Z W, SUN H D. The chemical constituents of four lichens from China[J]. Acta Botanica Yunnanica, 1991,13(1): 81-84. [30] HAUCK M, BÖNING J, JACOB M, et al. Lichen substance concentrations in the lichen Hypogymnia physodes are correlated with heavy metal concentrations in the substratum[J]. Environmental and Experimental Botany, 2013, 85: 58-63. DOI:10.1016/j.envexpbot.2012.08.011. [31] CAVIGLIA A M, NICORA P, GIORDANI P, et al. Oxidative stress and usnic acid content in Parmelia caperata and Parmelia soredians(Lichenes)[J]. Il Farmaco, 2001, 56(5/6/7): 379-382. DOI:10.1016/S0014-827X(01)01090-4. [32] PURVIS O W, ELIX J A, GAUL K L. The occurrence of copper-psoromic acid in lichens from cupriferous substrata[J]. The Lichenologist, 1990, 22(3): 345-354. DOI:10.1017/s002428299000038x. [33] BJELLAND T, THORSETH I H. Comparative studies of the lichen-rock interface of four lichens in Vingen, Western Norway[J]. Chemical Geology, 2002, 192(1/2): 81-98. DOI:10.1016/s0009-2541(02)00193-6. [34] PAWLIK-SKOWRONSKA B, BACKOR M. Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats[J]. Environmental and Experimental Botany, 2011, 72(1): 64-70. DOI:10.1016/j.envexpbot.2010.07.002. [35] ADAMO P. Weathering of rocks and neogenesis of minerals associated with lichen activity[J]. Applied Clay Science, 2000, 16(5/6): 229-256. DOI:10.1016/s0169-1317(99)00056-3. [36] CHEN J, BLUME H P, BEYER L. Weathering of rocks induced by lichen colonization: a review[J]. Catena, 2000, 39(2): 121-146. DOI:10.1016/s0341-8162(99)00085-5. [37] AROCENA J M, SIDDIQUE T, THRING R W, et al. Investigation of lichens using molecular techniques and associated mineral accumulations on a basaltic flow in a Mediterranean environment[J]. Catena, 2007, 70(3): 356-365. DOI:10.1016/j.catena.2006.11.006. [38] SCARCIGLIA F, LE PERA E, CRITELLI S. Weathering and pedogenesis in the Sila grande massif(calabria, south Italy): from field scale to micromorphology[J]. Catena, 2005, 61(1): 1-29. DOI:10.1016/j.catena.2005.02.001. [39] STILLINGS L L, DREVER J I, BRANTLEY S L, et al. Rates of feldspar dissolution at pH 3-7 with 0-8 m M oxalic acid[J]. Chemical Geology, 1996, 132(1/2/3/4): 79-89. DOI:10.1016/S0009-2541(96)00043-5. [40] 阿不都·阿巴斯,吴继农. 新疆地衣[M]. 乌鲁木齐: 新疆科技卫生出版社, 1998. [41] 吴金陵. 中国地衣植物图鉴[M]. 北京: 中国展望出版社. 1987. WU J L. Chinese lichen plant Atlas[M]. Beijing: China Prospect Publishing House. 1987. [42] ABDEL-HAMEED M, BERTRAND R L, PIERCEY-NORMORE M D, et al. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus[J]. Fungal Biology, 2016, 120(3): 306-316. DOI:10.1016/j.funbio.2015.10.009. [43] BARKER W W, BANFIELD J F. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities[J]. Chemical Geology, 1996, 132(1/2/3/4): 55-69. DOI:10.1016/s0009-2541(96)00041-1. [44] BJERKE J, ELVEBAKK A, DOMINGUEZ E, et al. Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen[J]. Phytochemistry, 2005, 66(3): 337-344. DOI:10.1016/j.phytochem.2004.12.007. [45] EDWARDS H G M, NEWTON E M, WYNN-WILLIAMS D D. Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid[J]. Journal of Molecular Structure, 2003, 651/652/653: 27-37. DOI:10.1016/s0022-2860(02)00626-9. [46] HOLDER J M, WYNN-WILLIAMS D D, RULL PEREZ F, et al. Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: acarospora from the Antarctic and Mediterranean[J]. New Phytologist, 2000, 145(2): 271-280. DOI:10.1046/j.1469-8137.2000.00573.x. [47] BIALONSKA D, DAYAN F E. Chemistry of the lichen hypogymnia physodes transplanted to an industrial region[J]. Journal of Chemical Ecology, 2005, 31(12): 2975-2991. DOI:10.1007/s10886-005-8408-x. [48] 李艺明, 杨世忠, 牟伯中. 一种甲酯化n-C16-地衣素的分离及结构鉴定[J]. 化学通报, 2009(11): 1008-1012. DOI:10.14159/j.cnki.0441-3776.2009.11.012. LI Y M, YANG S Z, MOU B Z. Isolation and structural characterization of esterified n-C16-lichenysin with Methanol[J]. Chemistry Bulletin, 2009(11): 1008-1012. [49] JIE C, BLUME H P. Rock-weathering by lichens in Antarctic: patterns and mechanisms[J]. Journal of Geographical Sciences, 2002, 12(4): 387-396. DOI:10.1007/bf02844595. [50] HAUCK M, JüRGENS S R. Usnic acid controls the acidity tolerance of lichens[J]. Environmental Pollution, 2008, 156(1): 115-122. DOI:10.1016/j.envpol.2007.12.033. [51] SMITS M M, HERRMANN A M, DUANE M, et al. The fungal-mineral interface: challenges and considerations of micro-analytical developments[J].Fungal Biology Reviews, 2009, 23(4): 122-131. DOI:10.1016/j.fbr.2009.11.001. [52] SEAWARD M R D, EDWARDS H G M. Biological origin of major chemical disturbances on ecclesiastical architecture studied by fourier transform raman spectroscopy[J]. Journal of Raman Spectroscopy, 1997, 28(9): 691-696. DOI:10.1002/(sici)1097-4555(199709)28:9<691::aid-jrs161>3.0.co; 2-4. [53] FAVERO-LONGO S E, CASTELLI D, SALVADORI O, et al. Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment[J]. International Biodeterioration & Biodegradation, 2005, 56(1): 17-27. DOI:10.1016/j.ibiod.2004.11.006. [54] APOLLARO C, ACCORNERO M, MARINI L, et al. The impact of dolomite and plagioclase weathering on the chemistry of shallow groundwaters circulating in a granodiorite-dominated catchment of the Sila Massif(Calabria, Southern Italy)[J]. Applied Geochemistry, 2009, 24(5): 957-979. DOI:10.1016/j.apgeochem.2009.02.026. [55] TU S X, GUO Z F, SUN J H. Effect of oxalic acid on potassium release from typical Chinese soils and minerals [J]. Pedosphere, 2007, 17(4): 457-466. DOI:10.1016/S1002-0160(07)60055-1. [56] 周跃飞, 陆现彩, 王汝成, 等. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23. DOI:10.3321/j.issn:1001-8166.2008.01.003. ZHOU Y F, LU X C, WANG R C, et al. Recent progress in the study of microbiomineralogy of feldspar[J]. Advances in Earth Science, 2008, 23(1): 17-23. [57] SHOTYK W, NESBITT H W. Incongruent and congruent dissolution of plagioclase feldspar: effect of feldspar composition and ligand complexation[J]. Geoderma, 1992, 55(1/2): 55-78. DOI:10.1016/0016-7061(92)90005-r. [58] EICK M J, GROSSL P R, GOLDEN D C, et al. Dissolution of a lunar basalt simulant as affected by pH and organic anions[J]. Geoderma, 1996, 74(1/2): 139-160. DOI:10.1016/s0016-7061(96)00055-9. [59] SCARCIGLIA F, SAPORITO N, LA RUSSA M F, et al. Role of lichens in weathering of granodiorite in the Sila Uplands(Calabria, Southern Italy)[J]. Sedimentary Geology, 2012, 280: 119-134. DOI:10.1016/j.sedgeo.2012.05.018. [60] HUTCHENS E, VALSAMI-JONES E, MCELDOWNEY S, et al. The role of heterotrophic bacteria in feldspar dissolution-an experimental approach[J]. Mineralogical Magazine, 2003, 67(6): 1157-1170. DOI:10.1180/0026461036760155. [61] ISKANDAR I K, SYERS J K. Metal-complex formation by lichen compounds[J]. Journal of Soil Science, 1972, 23(3): 255-265. DOI:10.1111/j.1365-2389.1972.tb01658.x. [62] ASCASO C, GALVAN J. Studies on the pedogenic action of lichen acids[J]. Pedobiologia, 1976, 16: 321-331. [63] ASCASO C, SANCHO L G, RODRIGUEZ-PASCUAL C. The weathering action of saxicolous lichens in maritime Antarctica[J]. Polar Biology, 1990, 11(1): 33-39. DOI:10.1007/bf00236519. [64] DREVER J I, VANCE G F. Role of soil organic acids in mineral weathering processes[C]//PITTMAN E D, LEWAN M D. Organic Acids in Geological Processes. New York: Springer, 1994. [65] WELCH S A, ULLMAN W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry[J]. Geochimica Et Cosmochimica Acta, 1993, 57(12): 2725-2736. DOI:10.1016/0016-7037(93)90386-b. [66] FINLAY R, WALLANDER H, SMITS M, et al. The role of Fungi in biogenic weathering in boreal forest soils[J]. Fungal Biology Reviews, 2009, 23(4): 101-106. DOI:10.1016/j.fbr.2010.03.002. [67] WINKELMANN G. Ecology of siderophores with special reference to the fungi[J]. BioMetals, 2007, 20(3/4): 379-392. DOI:10.1007/s10534-006-9076-1. [67] HOLMSTRÖM S J M, LUNDSTRÖM U S, FINLAY R D, et al. Siderophores in forest soil solution[J]. Biogeochemistry, 2004, 71: 247-258. [69] ELBERT W, WEBER B, BURROWS S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience, 2012, 5(7): 459-462. DOI:10.1038/ngeo1486. |
[1] | WU Yan, HUANG Qing, LIU Xun, ZHENG Rui, CEN Jiabao, DING Bo, ZHANG Yunlin, FU Yuhong. Effects of Pinus massoniana plantation age on soil physical and chemical properties in Karst areas in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 99-107. |
[2] | LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 67-73. |
[3] | XING Bingbing, LI Yao, MAO Lingfeng. Taxonomic and geographic differentiation of phylogenetic conservatism of plant functional traits: a case study of maximum plant height of Chinese angiosperms [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 59-66. |
[4] | SA Rula, WANG Zirui, HUA Yongchun, HU Richa, LIU Lei, GAO Minglong, YU Xiaoyu. Evaluating forest ecosystem restoration ability of natural forest in northern Greater Khingan Mountains by a structural equation model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 196-204. |
[5] | LU Wenyan, DONG Lingbo, TIAN Yuan, WANG Shashan, QU Xuanyi, WEI Wei, LIU Zhaogang. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 157-165. |
[6] | SONG Ge, HAN Fang, XU Jingwei, YANG Zhijun, MU Haoxiang, WANG Zhiyong, WANG Zhe. Distribution suitability analysis of the tree species of shelter forest in coastal area of Shandong based on LandUSEM model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 42-50. |
[7] | ZOU Pengjun, GUAN Qingwei, YUAN Zaixiang, GU Yuqing, WU Qian, NIU Yingying, CHEN Xia, JIN Xuemei. The population structure and dynamics of Liquidambar formosana on the southeast foothill of Zijin Mountain, Nanjing City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 157-163. |
[8] | SUN Meijia, ZHOU Zhiyong, WANG Yongqiang, SHEN Ying, XIA Wei. The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 67-75. |
[9] | YAO Nan, LIU Guangquan, YAO Shunbo, JIA Lei, LIN Ying, DENG Yuanjie, HOU Mengyang. Analysis of carbon sequestration effect of sloping land conversion program in Loess Plateau from the perspective of slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 180-188. |
[10] | WANG Qisong, GUO Qingxi. The spatial distribution characteristics of light intensity attenuation under natural secondary forests in eastern Jilin Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 101-108. |
[11] | ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 167-176. |
[12] | XU Chen, RUAN Honghua, WU Xiaoqiao, XIE Youchao, YANG Yan. Progresses in drought stress on the accumulation and turnover of soil organic carbon in forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 195-206. |
[13] | ZHANG Ruiting, YANG Jinyan, RUAN Honghua. Meta-analyses of responses of sap flow to changes in environmental factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 113-120. |
[14] | LI Linke, WANG Yinuo, XUE Xiao, ZHANG Wen, WU Jiaojiao, GAO Lan, TAN Xing, RONG Xingyu, DUAN Rurong, LIU Yun. Response of Cotinus coggygria photosynthesis and coloration to weather change in Chongqing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 95-103. |
[15] | XIA Jie, CHEN Sheng, WU Yifan, ZHANG Wei, XIE Jinzhong. Dynamic changes of soil microbial biomass and microbial entropy after planting Dictyophora indusiata in Phyllostachys edulis forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 127-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||