JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (5): 89-95.doi: 10.3969/j.issn.1000-2006.201811013
Previous Articles Next Articles
XIA Xiaoyu1(), WANG Fengjuan1, FU Qun1, ZHANG Na2, GUO Qingqi1,3,*(
)
Received:
2018-11-06
Revised:
2019-06-30
Online:
2019-10-08
Published:
2019-10-08
Contact:
GUO Qingqi
E-mail:1456010013@qq.com;qingqiguo@vip.163.com
Table 1
Relationship among residual percent of proanthocyanidins with temperature and time at different pH under aerobic and nitrogen-filled conditions%"
pH | 贮藏时间/d storage days | 有氧条件aerobic conditions | 充氮条件nitrogen-filled conditions | ||||||
---|---|---|---|---|---|---|---|---|---|
50 ℃ | 60 ℃ | 70 ℃ | 80 ℃ | 50 ℃ | 60 ℃ | 70 ℃ | 80 ℃ | ||
5.8 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
1 | 86.60±0.13ae | 81.69±1.06be | 71.88±0.53ce | 61.79±1.06de | 88.63±1.59ae | 82.09±1.12be | 76.83±0.96ce | 69.49±0.32de | |
2 | 78.64±1.19ae | 67.10±1.08be | 63.12±0.80ce | 40.83±0.27de | 82.25±1.62ae | 71.40±0.96be | 64.23±0.80ce | 50.83±0.16de | |
3 | 68.71±0.88ae | 55.87±2.06be | 46.67±0.65ce | 29.25±0.13de | 80.01±0.18ae | 64.71±0.32be | 53.55±1.28ce | 38.08±0.15de | |
4 | 56.75±0.27ae | 47.60±1.19be | 36.72±0.14ce | 21.33±0.40de | 77.14±1.53ae | 58.97±1.58be | 44.93±0.94ce | 29.31±1.14de | |
5 | 47.86±0.66ae | 38.31±0.58be | 32.87±1.33ce | 14.43±0.15de | 73.48±1.12ae | 52.27±1.28be | 36.64±1.29ce | 23.89±0.64de | |
4.6 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
1 | 79.43±0.11af | 64.59±1.46bf | 48.43±0.15cf | 38.10±0.29df | 87.11±1.74ae | 76.92±0.35bf | 68.14±1.78cf | 56.54±0.70df | |
2 | 64.39±3.98af | 56.36±1.30bf | 39.07±2.34cf | 32.47±0.49df | 76.75±0.18af | 67.08±3.51bf | 50.22±0.70cf | 39.32±0.67df | |
3 | 56.29±0.73af | 48.70±2.06bf | 29.78±1.46cf | 21.60±0.15df | 64.62±2.24af | 50.10±1.47bf | 38.50±1.95cf | 29.95±1.19df | |
4 | 49.60±0.62af | 35.60±0.87bf | 25.29±0.87cf | 17.29±0.44df | 56.72±1.93af | 43.54±1.05bf | 30.01±0.18cf | 22.16±1.76df | |
5 | 41.01±1.16af | 29.48±1.19bf | 21.51±0.29cf | 11.32±0.58df | 52.85±0.53af | 38.27±0.70bf | 26.50±0.53cf | 16.83±0.35df | |
2.2 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
1 | 44.77±1.50ag | 30.58±1.41bg | 29.13±2.20cg | 22.70±0.78dg | 60.57±2.05af | 42.18±0.67bg | 34.21±0.67cg | 28.50±0.89dg | |
2 | 33.40±0.83ag | 20.92±0.08bg | 16.93±1.60cg | 13.61±0.11dg | 47.49±0.53ag | 28.17±0.31bg | 24.04±1.28cg | 18.44±1.40dg | |
3 | 25.75±0.50ag | 16.27±0.33bg | 11.61±0.85cg | 8.942±0.06dg | 37.01±1.87ag | 21.23±0.47bg | 18.34±0.31cg | 12.51±0.14dg | |
4 | 23.92±0.33ag | 12.44±0.16bg | 8.950±0.67cg | 6.563±0.23dg | 32.81±0.16ag | 17.90±0.62bg | 13.82±0.78cg | 9.557±0.62dg | |
5 | 19.26±1.00ag | 7.153±0.67bg | 6.554±0.33cg | 5.557±0.34dg | 29.08±0.77ag | 14.48±0.28bg | 12.58±0.15cg | 6.382±0.30dg |
Table 2
Reaction rate constants and correlation coefficients of thermal degradation of proanthocyanidins in blueberry juice beverages at different pH values under the aerobic and nitrogen-filled conditions"
pH | 温度/℃ temperature | 有氧条件 aerobic conditions | 充氮条件 nitrogen-filled conditions | ||||||
---|---|---|---|---|---|---|---|---|---|
零级反应 zero-order reaction | 一级反应 first-order reaction | 零级反应 zero-order reaction | 一级反应 first-order reaction | ||||||
k | R2 | k | R2 | k | R2 | k | R2 | ||
5.8 | 50 | 6.040 3 | 0.996 0 | 0.151 2 | 0.985 1 | 1.790 3 | 0.966 2 | 0.043 9 | 0.973 5 |
60 | 6.459 7 | 0.986 7 | 0.185 8 | 0.998 2 | 3.645 2 | 0.984 5 | 0.109 4 | 0.995 0 | |
70 | 6.346 8 | 0.963 7 | 0.210 6 | 0.977 5 | 5.040 3 | 0.991 6 | 0.183 8 | 0.999 3 | |
80 | 6.943 5 | 0.942 7 | 0.355 8 | 0.997 8 | 5.701 6 | 0.950 0 | 0.268 6 | 0.994 0 | |
4.6 | 50 | 5.078 0 | 0.973 9 | 0.158 3 | 0.991 7 | 4.064 5 | 0.969 0 | 0.130 2 | 0.983 4 |
60 | 5.040 9 | 0.989 2 | 0.202 8 | 0.976 3 | 4.629 0 | 0.958 0 | 0.182 9 | 0.977 7 | |
70 | 3.747 3 | 0.959 3 | 0.205 8 | 0.989 1 | 4.750 0 | 0.935 5 | 0.240 4 | 0.981 0 | |
80 | 3.809 1 | 0.980 3 | 0.305 7 | 0.980 9 | 4.432 8 | 0.949 5 | 0.299 7 | 0.997 3 | |
2.2 | 50 | 2.932 8 | 0.918 7 | 0.202 1 | 0.965 4 | 4.024 2 | 0.928 8 | 0.183 8 | 0.968 6 |
60 | 2.682 3 | 0.966 1 | 0.342 5 | 0.977 7 | 3.403 2 | 0.898 0 | 0.259 3 | 0.970 5 | |
70 | 2.576 3 | 0.876 4 | 0.362 1 | 0.978 5 | 2.771 5 | 0.915 4 | 0.255 5 | 0.969 4 | |
80 | 2.003 8 | 0.871 0 | 0.354 4 | 0.964 6 | 2.752 6 | 0.927 6 | 0.365 0 | 0.994 6 |
Table 3
Activation energy and pre-exponential factors of degradation changes of proanthocyanidins in blueberry juice beverages under the aerobic and nitrogen-filled conditions"
pH | 温度/℃ temperature | 有氧条件aerobic conditions | 充氮条件nitrogen-filled conditions | ||||
---|---|---|---|---|---|---|---|
t1/2/d | Ea/(kJ·mol-1) | Fb | t1/2/d | Ea/(kJ·mol-1) | Fb | ||
5.8 | 50 | 4.58 | 25.34 | 1 780.41 | 15.79 | 56.70 | 73 441 519.91 |
60 | 3.73 | 6.34 | |||||
70 | 3.29 | 3.77 | |||||
80 | 1.95 | 2.58 | |||||
pH | 温度/℃ temperature | 有氧条件aerobic conditions | 充氮条件nitrogen-filled conditions | ||||
t1/2/d | Ea/(kJ·mol-1) | Fb | t1/2/d | Ea/(kJ·mol-1) | Fb | ||
4.6 | 50 | 4.38 | 18.77 | 169.66 | 5.32 | 26.35 | 2 432.32 |
60 | 3.42 | 3.79 | |||||
70 | 3.37 | 2.88 | |||||
80 | 2.27 | 2.31 | |||||
2.2 | 50 | 3.43 | 16.80 | 122.07 | 3.77 | 19.36 | 255.11 |
60 | 2.02 | 2.67 | |||||
70 | 1.91 | 2.71 | |||||
80 | 1.96 | 1.90 |
Table 4
Degradation kinetic models of proanthocyanidins in blueberry juice beverages under the aerobic and nitrogen-filled conditions"
pH | 动力学模型kinetic model | |
---|---|---|
有氧条件aerobic conditions | 充氮条件nitrogen-filled conditions | |
5.8 | | |
4.6 | | |
2.2 | | |
Table 5
Validation of degradation kinetic model of proanthocyanidins in blueberry juice beverages under the aerobic and nitrogen-filled conditions%"
pH | 温度/℃ temper- ature | 有氧条件残留率 residual rate under aerobic conditions | 充氮条件残留率 residual rate under nitrogen-filled conditions | ||||
---|---|---|---|---|---|---|---|
预测值 predicted | 实测值 measured | R2 | 预测值 predicted | 实测值 measured | R2 | ||
5.8 | 4 | 74.30 | 79.14±1.43 | 93.88 | 98.52 | 97.80±1.29 | 99.27 |
25 | 52.47 | 57.71±0.21 | 90.92 | 91.91 | 87.84±0.55 | 95.57 | |
4.6 | 4 | 61.22 | 66.69±0.99 | 91.80 | 77.05 | 82.40±0.39 | 93.51 |
25 | 41.84 | 43.63±1.22 | 95.90 | 55.77 | 61.14±1.17 | 91.22 | |
2.2 | 4 | 43.68 | 29.35±1.19 | 67.19 | 56.51 | 43.74±0.14 | 77.40 |
25 | 25.03 | 15.08±1.76 | 60.25 | 35.63 | 25.52±0.69 | 71.63 |
[1] | 吴思政, 梁文斌, 聂东伶, 等. 高温胁迫对不同蓝莓品种光合作用的影响[J]. 中南林业科技大学学报, 2017, 37(11):1-8. DOI: 10.14067/j.cnki.1673-923x.2017.11.001. |
WU S Z, LIANG W B, NIE D L, et al. Effects of high temperature stress on photosynjournal of different blueberry varieties[J]. Journal of Central South University of Forestry & Technology, 2017, 37(11):1-8. | |
[2] | 薄艳秋. 蓝莓花青素的提取和抗氧化活性研究[D]. 哈尔滨:东北农业大学, 2012. |
BO Y Q. Study on extraction and antioxidant activity of blueberrys[D]. Harbin:Northeast Agricultural University, 2012. | |
[3] | REQUE P M, STEFFENS R S, JABLONSKI A. Cold storage of blueberry (Vaccinium spp.) fruits and juice: anthocyanin stability and antioxidant activity[J]. Journal of Food Composition & Analysis, 2014, 33(1):111-116. DOI: 10.1016/j.jfca.2013.11.007. |
[4] | 樊梓鸾, 柳雅馨, 杨蕾玉, 等. 3种浆果-藕复合果丹皮体外消化物抗氧化研究[J]. 南京林业大学学报(自然科学版), 2018, 42(3):86-92. DOI: 10.3969/j.issn.1000-2006.201712036. |
FAN Z L, LIU Y X, YANG L Y, et al. Antioxidant activity of digestive products from three kinds of berry-lotus root complex in vitro[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(3):86-92. | |
[5] | 刘刚, 马岩, 孟宪军, 等. 响应面法优化酶法提取蓝莓果汁工艺条件[J]. 食品科学, 2013, 34(14):68-72. DOI: 10.7506/spkx1002-6630-201314014. |
LIU G, MA Y, MENG X J, et al. Optimization of enzymatic hydrolysis conditions for enhanced juice yield from blueberry fruits using response surface methodology[J]. Food Science, 2013, 34(14):68-72. | |
[6] |
OU K, GU L. Absorption and metabolism of proanthocyanidins[J]. Journal of Functional Foods, 2014, 7(1):43-53. DOI: 10.1016/j.jff.2013.08.004.
doi: 10.1016/j.jff.2013.08.004 |
[7] | 崔同, 李喜悦, 王荣芳, 等. 山楂原花青素的热降解动力学及稳定性研究[J]. 食品科技, 2015, 40(8):278-282. |
CUI T, LI X Y, WANG R F, et al. The degradation kinetics and the stability of procyanidins from Chinese hawthorn fruit[J]. Food Science and Technology, 2015, 40(8):278-282. | |
[8] |
NICOLAS V, MARIE-FRANCOISE N, ISABELLE P T. Proanthocyanidins from Quercus petraea and Q.roburheartwood: quantification and structures[J]. C R Chimie, 2006, 9:120-126. DOI: 10.1016/j.crci.2005.09.001.
doi: 10.1016/j.crci.2005.09.001 |
[9] | 郭庆启, 张娜, 王硕, 等. 蓝靛果汁维生素C热降解动力学的研究[J]. 食品工业科技, 2012, 33(8):179-182. DOI: 10.13386/j.issn1002-0306.2012.08.065. |
GUO Q Q, ZHANG N, WANG S, et al. Thermal degradation dynamic of vitamin C in Lonicera edulis Turcz juice [J]. Science and Technology of Food Industry, 2012, 33(8):179-182. | |
[10] | 朱丹, 李世燕, 牛广财, 等. 毛酸浆发酵过程中非酶褐变动力学研究[J]. 现代食品科技, 2017, 33(2):115-122. DOI: 10.13982/j.mfst.1673-9078.2017.2.018. |
ZHU D, LI S Y, NIU G C, et al. Kinetic study of non-enzymatic browning of Physalis pubescensl during fermentation [J]. Modern Food Science & Technology, 2017, 33(2):115-122. | |
[11] |
HEMINGWAY, RICHARD W, MCGRAW, et al. Kinetics of acid-catalyzed cleavage of procyanidins[J]. Journal of Wood Chemistry and Technology, 1983, 3(4):421-435. DOI: 10.1080/02773818308085173
doi: 10.1080/02773818308085173 |
[12] | 汪志慧, 孙智达, 谢笔钧. 莲房原花青素的稳定性及热降解动力学研究[J]. 食品科学, 2011, 32(7):77-82. |
WANG Z H, SUN Z D, XIE B J, et al. Stability and thermal degradation kinetics of procyanidins from lotus seed pods[J]. Food Science, 2011, 32(7):77-82. | |
[13] | 李斌, 孟宪军, 智洪涛, 等. 葡萄籽中原花青素的稳定性研究[J]. 食品研究与开发, 2007, 28(10):71-73. |
LI B, MENG X J, ZHI H T. The study on the stabilization of proanthocyanidins from grape seeds[J]. Food Research and Development, 2007, 28(10):71-73. | |
[14] | 张海晖, 李金凤, 段玉清, 等. 板栗壳原花青素提取及其稳定性研究[J]. 食品科学, 2011, 32(8):5-9. |
ZHANG H H, LI J F, DUAN Y Q, et al. Extraction and stability of procyanidins from chestnut shells[J]. Food Science, 2011, 32(8):5-9. | |
[15] | WU Z S, ZHANG M, WANG J. Effects of high-pressure argon and nitrogen treatments on respiration, browning and antioxidant potential of minimally processed pineapples during shelf life[J]. Journal of the Science of Food & Agriculture, 2012, 92(11):2250-2259. |
[16] | 丁娟, 李学伟, 胡嘉良, 等. 充氮处理对荔枝酒氧化褐变的影响研究[J]. 食品工业科技, 2012, 33(10):161-165. DOI: 10.13386/j.issn1002-0306.2012.10.062. |
DING J, LI X W, HU J L, et al. Effect of nitrogen treatment on oxidative browning of litchi wine[J]. Science and Technology of Food Industry, 2012, 33(10):161-165. |
[1] | YIN Yuanyuan, TIAN Xiuzhi, ZHU Chunbo, JIANG Xue, WANG Hongbo, GAO Weidong. Reinforcement on the thermal stability of poly(methyl methacrylate)of cellulose nanocrystals modified with polystyrene [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 138-142. |
[2] | LIU Juan, NAN Jingya, WANG Chunpeng, CHU Fuxiang, CHEN Riqing1, 2*. Modification research of cellulose based urea-formaldehyde resin molding compound [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(04): 127-131. |
[3] | SUN Enhui,HUANG Hongying,WU Guofeng,CHANG Zhizhou. Synthesis and biodegradation characteristics of urea-formaldehyde resin modified with soy protein [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(01): 97-102. |
[4] | ZHANG Lun, LIU Gongjun, HE Baiqiu, WANG Fei. Acute toxicity of proanthocyanidins from Myrica esculenta Buch. Ham. bark on mice and its antioxidative properties [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(04): 85-89. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2204
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1768
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||