JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2): 133-140.doi: 10.3969/j.issn.1000-2006.201812016
Previous Articles Next Articles
HAN Yuna1(), ZHANG Yu1, JIN Guangze1,2,*()
Received:
2018-12-08
Revised:
2019-04-20
Online:
2020-03-30
Published:
2020-04-01
Contact:
JIN Guangze
E-mail:nmghanyn@163.com;taxus@126.com
CLC Number:
HAN Yuna, ZHANG Yu, JIN Guangze. Effects of decay class and diameter class on moisture content and wood density in a typical mixed broadleaf-Korean pine forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 133-140.
Fig.1
Moisture content and wood density of woody debris of all main tree species at different decay classes and diameter classes Different uppercase letters indicate extremely significant difference between sapwood and heartwood (P < 0.001). Different lowercase letters indicate significant difference among different decay classes in sapwood and heartwood ( P < 0.05). The difference among unmarked letters is not significant. "
Table 1
The relationship between moisture content & wood density and decay class & diameter class"
自变量 independent variable | 边材含水率 moisture content of sapwood | 边材密度 density of sapwood | 心材含水率 moisture content of heartwood | 心材密度 density of heartwood | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
回归系数 RC | P | 回归系数 RC | P | 回归系数 RC | P | 回归系数 RC | P | |||||||
腐烂等级 decay class | 7.468 | 0.003 | -0.062 | < 0.001 | 8.987 | < 0.001 | -0.068 | < 0.001 | ||||||
径级 diameter class | 1.062 | 0.742 | -0.036 | > 0.05 | 2.761 | > 0.05 | -0.020 | > 0.05 | ||||||
腐烂等级×径级 decay class×diameter class | 0.855 | 0.466 | 0.006 | > 0.05 | -0.006 | > 0.05 | 0.007 | > 0.05 | ||||||
决定系数 R2 | 0.268 | 0.187 | 0.239 | 0.230 |
Table 2
ANOVA test of factors affecting moisture content and wood density of wood debirs"
因子 factor | 含水率moisture content | 木材密度wood density | ||
---|---|---|---|---|
F | P | F | P | |
树种 tree species | 15.729 | <0.05 | 15.713 | <0.001 |
腐烂等级 decay class | 61.391 | <0.001 | 26.349 | <0.001 |
径级 diameter class | 4.020 | 0.019 | 1.135 | >0.05 |
结构组分 structural component | 0.913 | <0.05 | 6.948 | 0.009 |
树种×腐烂等级 species×decay class | 3.908 | <0.001 | 3.686 | <0.001 |
树种×径级 species×diameter class | 4.783 | <0.001 | 3.332 | <0.001 |
腐烂等级×径级 decay class×diameter class | 0.442 | >0.05 | 3.725 | 0.006 |
树种×结构组分 species×structural component | 1.400 | >0.05 | 0.663 | >0.05 |
腐烂等级×结构组分 decay class ×structural component | 0.298 | >0.05 | 1.463 | >0.05 |
径级×结构组分 diameter class×structural component | 0.056 | >0.05 | 1.207 | >0.05 |
树种×腐烂等级×径级 species×decay class×diameter class | 2.223 | 0.001 | 2.690 | <0.001 |
树种×腐烂等级×结构组分 species×decay class ×structural component | 0.557 | >0.05 | 0.564 | >0.05 |
树种×径级×结构组分 species×diameter class×structural component | 0.562 | >0.05 | 0.486 | >0.05 |
腐烂等级×径级×结构组分 decay class×diameter class×structural component | 0.319 | >0.05 | 0.795 | >0.05 |
树种×腐烂等级×径级×结构组分 species×decay class×diameter class×structural component | 0.581 | >0.05 | 0.414 | >0.05 |
"
结构组分 structural component | 因子 factor | 树种 tree species | |||||||
---|---|---|---|---|---|---|---|---|---|
Pk | An | Bc | Acer | Tili | Fm | Ulmu | |||
边材 sapwood | 腐烂等级 decay class | Ⅰ | 14.7±1.3 bB | 41.6±7.1 a | 37.1±4.1 aB | 31.6±3.1 aB | 32.7±3.3 aB | 41.1±2.9 a | 27.8±4.9 b |
Ⅱ | 34.3±7.7 cAB | 51.0±7.6 ac | 59.3±7.2 abA | 61.7±5.3 aA | 44.7±3.4 acB | 46.9±1.7 ac | 36.5±4.7 bc | ||
Ⅲ | 46.9±6.7 abA | 56.5±8.4 ab | 64.8±6.4 aA | 53.4±6.2 abA | 65.5±4.2 aA | 47.0±6.5 ab | 31.4±4.3 b | ||
径级 diameter class | ⅰ | 44.2±6.5 ac | 27.5±5.3 bcB | 58.4±6.3 a | 49.4±6.6 ab | 46.1±6.0 ac | 48.9±2.9 ab | 21.3±4.0 c | |
ⅱ | 43.7±7.4 | 56.6±6.9 A | 50.1±6.1 | 48.7±6.7 | 47.8±4.4 | 44.8±3.9 | 36.8±3.7 | ||
ⅲ | 55.3±7.3 | 64.9±5.2 A | 51.8±8.5 | 46.9±6.2 | 50.0±8.0 | 40.4±2.6 | 37.6±4.5 | ||
心材 heartwood | 腐烂等级 decay class | Ⅰ | 34.4±10.5 | 37.1±7.0 | 41.9±3.9 B | 29.9±29.9 B | 32.7±4.2 C | 39.3±3.1 | 25.1±4.8 |
Ⅱ | 33.7±7.7 b | 40.8±6.3 ab | 60.2±5.7 aA | 58.5±5.7 aA | 55.0±5.5 abB | 48.7±2.1 ab | 33.8±6.3 b | ||
Ⅲ | 58.4±7.8 a | 57.2±6.0 a | 62.8±5.7 aA | 56.1±6.8 aA | 72.7±2.9 aA | 49.7±7.1 ab | 28.0±5.3 b | ||
径级 diameter class | ⅰ | 34.2±6.8 ab | 33.3±5.7 ab | 55.5±6.6 a | 52.2±7.5 a | 53.2±7.6 a | 48.9±3.4 a | 18.4±3.9 bB | |
ⅱ | 47.3±7.8 | 47.9±7.9 | 55.6±5.5 | 48.2±5.1 | 52.7±5.1 | 41.1±4.1 | 30.2±4.9 AB | ||
ⅲ | 60.1±7.1 | 55.0±4.9 | 53.4±5.9 | 43.5±6.8 | 54.5±9.0 | 47.3±3.7 | 38.3±5.6 A |
Table 4
Wood density of woody debris for main tree species at different decay classes and diameter classesg/cm3 "
结构组分 structural component | 因子 factor | 树种 tree species | |||||||
---|---|---|---|---|---|---|---|---|---|
Pk | An | Bc | Acer | Tili | Fm | Ulmu | |||
边材 sapwood | 腐烂等级 decay class | Ⅰ | 0.39±0.02 abA | 0.29±0.02 b | 0.37±0.05 b | 0.43±0.02 abA | 0.31±0.03 b | 0.39±0.05 ab | 0.55±0.08 a |
Ⅱ | 0.35±0.03 abA | 0.29±0.03 ab | 0.29±0.05 ab | 0.23±0.03 bB | 0.32±0.05 ab | 0.43±0.04 a | 0.42±0.03 a | ||
Ⅲ | 0.23±0.04 bB | 0.28±0.03 ab | 0.25±0.03 b | 0.35±0.03 abA | 0.29±0.04 ab | 0.35±0.05 ab | 0.42±0.02 aα | ||
径级 diameter class | ⅰ | 0.31±0.03 bA | 0.31±0.02 b | 0.32±0.04 b | 0.34±0.03 ab | 0.34±0.03 ab | 0.39±0.04 ab | 0.50±0.05 a | |
ⅱ | 0.29±0.03 AB | 0.28±0.03 | 0.28±0.05 | 0.32±0.03 | 0.34±0.03 | 0.41±0.05 | 0.42±0.04 | ||
ⅲ | 0.18±0.03 cB | 0.26±0.02 bc | 0.31±0.05 ac | 0.37±0.05 ab | 0.22±0.06 bc | 0.38±0.04 ab | 0.47±0.07 a | ||
心材 heartwood | 腐烂等级 decay class | Ⅰ | 0.29±0.05 bA | 0.32±0.04 ab | 0.39±0.05 abA | 0.39±0.03 ab | 0.31±0.02 bA | 0.40±0.04 ab | 0.51±0.06 aA |
Ⅱ | 0.36±0.03 abA | 0.27±0.01 ab | 0.29±0.04 abAB | 0.27±0.03 ab | 0.26±0.05b AB | 0.40±0.03 a | 0.40±0.03 abAB | ||
Ⅲ | 0.15±0.02 bB | 0.28±0.02 ab | 0.22±0.03 abB | 0.32±0.04 a | 0.20±0.02 abB | 0.27±0.05 ab | 0.27±0.04 abBβ | ||
径级 diameter class | ⅰ | 0.31±0.03 abA | 0.26±0.03 ab | 0.30±0.04 ab | 0.27±0.03 abB | 0.22±0.02 bAB | 0.40±0.04 a | 0.44±0.06 a | |
ⅱ | 0.25±0.03 AB | 0.31±0.03 | 0.27±0.05 | 0.30±0.03 AB | 0.31±0.03 A | 0.36±0.03 | 0.40±0.02 | ||
ⅲ | 0.17±0.03 cB | 0.30±0.01 ac | 0.32±0.05 ac | 0.40±0.04 aA | 0.20±0.04 bcB | 0.35±0.05 ab | 0.350.07 ac |
[1] |
CORNELISSEN J H C, SASS-KLAASSEN U, POORTER L, et al. Controls on coarse wood decay in temperate tree species:birth of the LOGLIFE experiment[J]. Ambio, 2012, 41(S3):231-245.DOI: 10.1007/s13280-012-0304-3.
doi: 10.1007/s13280-012-0304-3 |
[2] |
RINTA-KANTO J M, SINKKO H, RAJALA T, et al. Natural decay process affects the abundance and community structure of bacteria and archaea inPicea abies logs[J]. FEMS Microbiol Ecol, 2016, 92(7):fiw087.DOI: 10.1093/femsec/fiw087.
doi: 10.1093/femsec/fiw087 |
[3] |
HOPPE B, KRÜGER D, KAHL T, et al. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies[J]. Sci Rep, 2015, 5:9456.DOI: 10.1038/srep09456.
doi: 10.1038/srep09456 |
[4] |
LODGE D, WINTER D, GONZÁLEZ G, et al. Effects of hurricane-felled tree trunks on soil carbon,nitrogen,microbial biomass,and root length in a wet tropical forest[J]. Forests, 2016, 7(12):264.DOI: 10.3390/f7110264.
doi: 10.3390/f7110264 |
[5] | BOND-LAMBERTY B, WANG C, GOWER S T. Annual carbon flux from woody debris for a boreal black spruce fire chronosequence[J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D23):1-10. DOI: 10.1029/2001jd000839. |
[6] |
ZHOU L, DAI L M, GU H Y, et al. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem[J]. J For Res, 2007, 18(1):48-54.DOI: 10.1007/s11676-007-0009-9.
doi: 10.1007/s11676-007-0009-9 |
[7] |
BARBOSA R I, DE CASTILHO C V, DE OLIVEIRA PERDIZ R, et al. Decomposition rates of coarse woody debris in undisturbed Amazonian seasonally flooded and unflooded forests in the Rio Negro-Rio Branco Basin in Roraima,Brazil[J]. For Ecol Manag, 2017, 397:1-9. DOI: 10.1016/j.foreco.2017.04.026.
doi: 10.1016/j.foreco.2017.04.026 |
[8] | HARMON M E, FRANKLIN J F, SWANSON F J, et al. Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 2004, 34:59-234. DOI: 10.1016/s0065-2504(08)60121-x. |
[9] |
HARMON M E, SEXTON J. Water balance of conifer logs in early stages of decomposition[J]. Plant and Soil, 1995, 172:141-152.DOI: 10.1007/bf00020868.
doi: 10.1007/BF00020868 |
[10] |
PALETTO A, TOSI V. Deadwood density variation with decay class in seven tree species of the Italian Alps[J]. Scand J For Res, 2010, 25(2):164-173.DOI: 10.1080/02827581003730773.
doi: 10.1080/02827581003730773 |
[11] | KRAIGHER H, JURC D, KALAN P, et al. Beech coarse woody debris characteristics in two virgin forest reserves in Southern Slovenia[J]. Zbornik Gozdarstva in Lesarstva, 2002, 69(69):9l-134.DOI: 10.1007/10713485_596. |
[12] |
GRAHAM R L, CROMACK K. Mass,nutrient content,and decay rate of dead boles in rain forests of Olympic National Park[J]. Can J For Res, 1982, 12(3):511-521.DOI: 10.1139/x82-080.
doi: 10.1139/x82-080 |
[13] |
ABBOTT D T, CROSSLEY D A JR. Woody litter decomposition following clear-cutting[J]. Ecology, 1982, 63(1):35-42.DOI: 10.2307/1937028.
doi: 10.2307/1937028 |
[14] |
SAKAI Y, UGAWA S, ISHIZUKA S, et al. Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica[J]. Soil Sci Plant Nutr, 2012, 58(4):526-537.DOI: 10.1080/00380768.2012.710526.
doi: 10.1080/00380768.2012.710526 |
[15] | KRAMER P J, KOZLOWSHI T T. Physiology of trees[M]. New York: mcGraw-Hill Publication in the Botanical Sciences, 1960. DOI: p.2307/379782. |
[16] |
OSUNKOYA O O, SHENG T K, MAHMUD N A, et al. Variation in wood density,wood water content,stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island[J]. Austral Ecol, 2007, 32(2):191-201.DOI: 10.1111/j.1442-9993.2007.01678.x.
doi: 10.1111/aec.2007.32.issue-2 |
[17] | HARMON M E, WOODALL C W, FASTH B, et al. Woody detritus density and density reduction factors for tree species in the United States:a synreport[R]. U.S. Department of Agriculture,Forest Service,Northern Research Station: General Technical Report NRS-29,2008. DOI: 10.2737/nrs-gtr-29. |
[18] | 刘妍妍, 金光泽. 小兴安岭阔叶红松林粗木质残体基础特征[J]. 林业科学, 2010,46(4):8-14. |
LIU Y Y, JIN G Z. Character of coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains,China[J]. Sci Silvae Sin, 2010,46(4):8-14. | |
[19] | 代力民, 徐振邦, 陈华. 阔叶红松林倒木贮量的变化规律[J]. 生态学报, 2000,20(3):412-416. |
DAI L M, XU Z B, CHEN H. Storage dynamics of fallen trees in the broad-leaved and Korean pine mixed forest[J]. Acta Ecol Sin, 2000,20(3):412-416.DOI: 10.3321/j.issn:1000-0933.2000.03.011. | |
[20] | 陈镜园, 毕连柱, 宋国华, 等. 小兴安岭丰林阔叶红松林木质物残体的贮量特征分析[J]. 南京林业大学学报(自然科学版), 2016,40(6):76-84. |
CHEN J Y, BI L Z, SONG G H, et al. Characteristics of woody debris in mixed broadleaved-Korean pine forest plot in Fenglin National Nature Reserve in Xiao Hinggan Mountains,China[J]. J Nanjing For Univ(Nat Sci Ed), 2016,40(6):76-84.DOI: 10.3969/j.issn.1000-2006.2016.06.012. | |
[21] | 刘妍妍, 金光泽. 小兴安岭阔叶红松林粗木质残体空间分布的点格局分析[J]. 生态学报, 2010,30(22):6072-6081. |
LIU Y Y, JIN G Z. Spatial point pattern analysis for coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains,China[J]. Acta Ecol Sin, 2010,30(22):6072-6081. | |
[22] |
张瑜, 金光泽. 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响[J]. 植物生态学报, 2016,40(12):1276-1288.
doi: 10.17521/cjpe.2016.0187 |
ZHANG Y, JIN G Z. Effects of decay classes and diameter classes on physico-chemical properties of Pinus koraiensis login a typical mixed broadleaved-Korean pine forest [J]. Chin J Plant Ecol, 2016,40(12):1276-1288.DOI: 10.17521/cjpe.2016.0187. | |
[23] | 刘妍妍, 金光泽, 黎如. 小兴安岭阔叶红松林粗木质残体的贮量特征[C]//经济发展方式转变与自主创新——第十二届中国科学技术协会年会论文集. 福州, 2010:1082-1089. |
LIU Y Y, JIN G Z, LI R. Storage characteristics of coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains, China[C]// Transformation of economic development mode and independent innovation: proceedings of the 12th China Science and Technology Association Annual Meeting. Fuzhou, 2010:1082-1089. | |
[24] |
徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012,20(4):470-481.
doi: 10.3724/SP.J.1003.2012.12233 |
XU L N, JIN G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,Northeast China [J]. Biodivers Sci, 2012,20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233. | |
[25] | 闫恩荣, 王希华, 黄建军. 森林粗死木质残体的概念及其分类[J]. 生态学报, 2005,25(1):158-167. |
YAN E R, WANG X H, HUANG J J. Concept and classification of coarse woody debris in forest ecosystems[J]. Acta Ecol Sin, 2005,25(1):158-167.DOI: 10.3321/j.issn:1000-0933.2005.01.025. | |
[26] |
HARMON M E, FASTH B, WOODALL C W, et al. Carbon concentration of standing and downed woody detritus:effects of tree taxa,decay class,position,and tissue type[J]. For Ecol Manag, 2013, 291:259-267.DOI: 10.1016/j.foreco.2012.11.046.
doi: 10.1016/j.foreco.2012.11.046 |
[27] |
BÜTLER R, PATTY L, LE BAYON R C, et al. Log decay of Picea abies in the Swiss Jura Mountains of central Europe[J]. For Ecol Manag, 2007, 242(2/3):791-799.DOI: 10.1016/j.foreco.2007.02.017.
doi: 10.1016/j.foreco.2007.02.017 |
[28] | FISSORE C, JURGENSEN M F, PICKENS J, et al. Role of soil texture,clay mineralogy,location,and temperature in coarse wood decomposition:a mesocosm experiment[J]. Ecosphere, 2016, 7(11):1-13.DOI: 10.1002/ecs2.1605. |
[29] |
SONG Z W, DUNN C, LÜ X T, et al. Coarse woody decay rates vary by physical position in tropical seasonal rainforests of SW China[J]. For Ecol Manag, 2017, 385:206-213.DOI: 10.1016/j.foreco.2016.11.033.
doi: 10.1016/j.foreco.2016.11.033 |
[30] |
NOH N, YOON T, KIM R H, et al. Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine (Pinus densiflora S.et Z.) forest[J]. Forests, 2017, 8(6):214.DOI: 10.3390/f8060214.
doi: 10.3390/f8060214 |
[31] |
PETRILLO M, CHERUBINI P, SARTORI G, et al. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting[J]. iForest, 2016, 9(1):154-164.DOI: 10.3832/ifor1591-008.
doi: 10.3832/ifor1591-008 |
[32] |
KÖSTER K, METSLAID M, ENGELHART J, et al. Dead wood basic density,and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests[J]. For Ecol Manag, 2015, 354:35-42.DOI: 10.1016/j.foreco.2015.06.039.
doi: 10.1016/j.foreco.2015.06.039 |
[33] |
BRIN A, BOUGET C, BRUSTEL H, et al. Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests[J]. J Insect Conserv, 2011, 15(5):653-669.DOI: 10.1007/s10841-010-9364-5.
doi: 10.1007/s10841-010-9364-5 |
[34] |
FEARNSIDE P M. Wood density for estimating forest biomass in Brazilian Amazonia[J]. For Ecol Manag, 1997, 90(1):59-87.DOI: 10.1016/s0378-1127(96)03840-6.
doi: 10.1016/S0378-1127(96)03840-6 |
[35] |
CHEN L X, XIANG W H, WU H L, et al. Tree growth traits and social status affect the wood density of pioneer species in secondary subtropical forest[J]. Ecol Evol, 2017, 7(14):5366-5377.DOI: 10.1002/ece3.3110.
doi: 10.1002/ece3.2017.7.issue-14 |
[36] |
HICKS W T, HARMON M E. Diffusion and seasonal dynamics of O2 in woody debris from the Pacific Northwest,USA[J]. Plant and Soil, 2002, 243(1):67-79.DOI: 10.1023/A:1019906101359.
doi: 10.1023/A:1019906101359 |
[37] |
MACKENSEN J, BAUHUS J. Density loss and respiration rates in coarse woody debris of Pinus radiata,Eucalyptus regnans and Eucalyptus maculata[J]. Soil Biol Biochem, 2003, 35(1):177-186.DOI: 10.1016/s0038-0717(02)00255-9.
doi: 10.1016/S0038-0717(02)00255-9 |
[1] | ZHANG Rui, ZHOU Zhenghu, WANG Chuankuan, JIN Ying. Xylem anatomical and hydraulic traits of trees with different wood properties in a temperate forest in northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 229-236. |
[2] | ZHANG Ruiting, YANG Jinyan, RUAN Honghua. Meta-analyses of responses of sap flow to changes in environmental factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 113-120. |
[3] | WANG Tian, WANG Xuefeng, LIU Jiazheng. The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 177-184. |
[4] | WANG Yunpeng, ZHANG Rui, ZHOU Zhichun, HUA Bin, HUANG Shaohua, MA Lizhen, FAN Huihua. A variation and selection of growth and wood traits for 10-year-old Schima superba [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 85-92. |
[5] | WEI Yulong, ZHANG Qiuliang. Forest edge renewal of Larix gmelinii and its response to the environment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 165-172. |
[6] | NI Chao, ZHANG Yun, GAO Handong. Prediction model of moisture content of masson pine seedling roots based on near infrared spectroscopy [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 91-96. |
[7] | ZHU Yuehua, PAN Biao, YU Chaoguang, YIN Yunlong, ZHANG Yaoli. Comparative study on DBH growth and wood density of Taxodium hybrid ‘Zhongshanshan 118’ and Taxodium distichum [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 201-206. |
[8] | WU Dan, CAO Wei, SHAO Quanqin, ZHAO Zhiping. Influences of grassland degradation on soil saturated moisture content in the Three-River Headwaters Region [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 182-186. |
[9] | ZHANG Xijin, LENG Hanbing, ZHAO Guangqi, JING Jun, TU Aicui, SONG Kun1,4*, DA Liangjun1,3,4. Allometric models for estimating aboveground biomass for four common greening tree species in Shanghai City, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(02): 141-146. |
[10] | WANG Yuting, XU Huadong, ZHOU Hanting, CAO Yanjun, JI Li. Effects of environmental temperatures on internal moisture content of standing trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(05): 107-113. |
[11] | CHEN Jingyuan,BI Lianzhu,SONG Guohua,ZHANG Wei,WANG Quanbo,LIU Yanyan,JIN Guangze. Characteristics of woody debris in mixed broadleaved-Korean pine forest plot in Fenglin National Nature Reserve in Xiao Hinggan Mountains, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(06): 76-84. |
[12] | GAO Weifeng,SHI Baoku,JIN Guangze. Effect of simulated nitrogen deposition on soil respiration in the typical mixed broadleaved-korean pine forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(01): 8-14. |
[13] | REN Haiqing, LI Xiazhen,, ZHONG Yong, XU Ming. Influencing factors of bearing properties of dowel parallel to grain of recombinant bamboo [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(05): 103-107. |
[14] | ZHANG Ting,YANG Ping. Effects of unilateralist freezing on the moisture migration of soil [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(01): 117-121. |
[15] | XU Xinwu, XU Deliang, LIU Xiang, SHEN Wei, ZHOU Kun. Investigation of the heat conduction coefficient of woody composite mat adhered with liquid UF resin at room temperature [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(01): 119-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||