JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3): 233-244.doi: 10.12302/j.issn.1000-2006.202004027
Previous Articles Next Articles
ZHU Peihuang(), CHEN Yu, JI Kongshu*()
Received:
2020-04-15
Revised:
2020-05-11
Online:
2021-05-30
Published:
2021-05-31
Contact:
JI Kongshu
E-mail:zphzhupeihuang@163.com;ksji@njfu.edu.cn
CLC Number:
ZHU Peihuang, CHEN Yu, JI Kongshu. A review of terpene synthases and genes in Pinaceae[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 233-244.
Table 1
The distribution, structure and function of terpene synthases subfamilies in plants(adapted from [16, 61])"
亚家族 subfamily | 组 group | 分布 distribution | 结构 structure | 功能 function |
---|---|---|---|---|
TPS-a | TPS-a1 | 双子叶植物 | Class Ⅰ(β、α) | 倍半萜合成酶 |
TPS-a2 | 单子叶植物 | 倍半萜合成酶 | ||
TPS-b | 被子植物 | Class Ⅰ(β、α) | 单萜合成酶、异戊烯基转移酶 | |
TPS-c | 陆地植物 | Class Ⅱ(γ、β、α) | CPS/KS、CPS和其他二萜合成酶 | |
TPS-d | TPS-d1 | 裸子植物 | Class Ⅰ(β、α、γ、β、α)、 Class Ⅰ/Ⅱ(γ、β、α) | 单萜合成酶(主要)、倍半萜合成酶 |
TPS-d2 | 倍半萜合成酶 | |||
TPS-d3 | 二萜合成酶(主要)、倍半萜合成酶 | |||
TPS-e/f | 维管束植物 | Class Ⅰ(β、α、γ、β、α) | 单萜、倍半萜合成酶、KS与其他二萜合成酶 | |
TPS-g | 被子植物 | ClassI(β、α、γ、β、α) | 单萜、倍半萜和二萜合成酶 | |
TPS-h | 江南卷柏 | Class Ⅰ/Ⅱ(γ、β、α) | 二萜合成酶 |
[1] |
CHRISTIANSON D W. Structural and chemical biology of terpenoid cyclases[J]. Chem Rev, 2017,117(17):11570-11648.DOI: 10.1021/acs.chemrev.7b00287.
doi: 10.1021/acs.chemrev.7b00287 |
[2] | YAMADA Y, CANE D E, IKEDA H. Diversity and analysis of bacterial terpene synthases[J]. Methods Enzymol, 2012,515:123-162.DOI: 10.1016/B978-0-12-394290-6.00007-0. |
[3] | SCHMIDT-DANNERT C. Biosynjournal of terpenoid natural products in fungi[J]. Adv Biochem Eng, 2015,148:19-61.DOI: 10.1007/10_2014_283. |
[4] |
BERAN F, RAHFELD P, LUCK K, et al. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle[J]. PNAS, 2016,113(11):2922-2927.DOI: 10.1073/pnas.1523468113.
doi: 10.1073/pnas.1523468113 |
[5] | THOLL D. Biosynjournal and biological functions of terpenoids in plants[J]. Adv Biochem Eng Biotechnol, 2015,148:63-106.DOI: 10.1007/10_2014_295. |
[6] |
TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use[J]. Planta, 2019,249(1):1-8.DOI: 10.1007/s00425-018-3056-x.
doi: 10.1007/s00425-018-3056-x |
[7] |
KEELING C I, BOHLMANN J. Diterpene resin acids in conifers[J]. Phytochemistry, 2006,67(22):2415-2423.DOI: 10.1016/j.phytochem.2006.08.019.
doi: 10.1016/j.phytochem.2006.08.019 |
[8] |
VAUGHAN M M, WANG Q, WEBSTER F X, et al. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory[J]. Plant Cell, 2013,25(3):1108-1125.DOI: 10.1105/tpc.112.100057.
doi: 10.1105/tpc.112.100057 |
[9] |
YANG C Q, WU X M, RUAN J X, et al. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum)[J]. Phytochemistry, 2013,96:46-56.DOI: 10.1016/j.phytochem.2013.09.009.
doi: 10.1016/j.phytochem.2013.09.009 |
[10] |
HARVEY B G, MEYLEMANS H A, GOUGH R V, et al. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering[J]. Phys Chem Chem Phys, 2014,16(20):9448-9457.DOI: 10.1039/c3cp55349c.
doi: 10.1039/C3CP55349C |
[11] |
LV Y, XU C R, ZHAO X M, et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells[J]. ACS Nano, 2018,12(2):1519-1536.DOI: 10.1021/acsnano.7b08051.
doi: 10.1021/acsnano.7b08051 |
[12] |
BRINKER A M, MA J, LIPSKY P E, et al. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae)[J]. Phytochemistry, 2007,68(6):732-766.DOI: 10.1016/j.phytochem.2006.11.029.
doi: 10.1016/j.phytochem.2006.11.029 |
[13] | DAUDA K, BUSARI Z, MORENIKEJI O, et al. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: formulation,antimalarial and toxicity assessments[J]. J Zhejiang Univ-Sci B (Biomed Biotechnol), 2017,18(11):977-985. |
[14] | 季孔庶, 王潘潘, 王金铃, 等. 松科树种的离体培养研究进展[J]. 南京林业大学学报(自然科学版), 2015,39(1):142-148. |
JI K S, WANG P P, WANG J L, et al. Review on in vitro culture of tree species in Pinaceae[J]. J Nanjing For Univ (Nat Sci Ed), 2015,39(1):142-148. | |
[15] | 刘骏, 耿其芳. 松科植物基因流的测量方法研究进展[J]. 安徽农业科学, 2013,41(14):6155-6158. |
LIU J, GENG Q F. Research progress on gene flow estimation methods of Pinaceae[J]. J Anhui Agric Sci, 2013,41(14):6155-6158.DOI: 10.13989/j.cnki.0517-6611.2013.14.015. | |
[16] |
CHEN F, THOLL D, BOHLMANN J, et al. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. Plant J, 2011,66(1):212-229.DOI: 10.1111/j.1365-313X.2011.04520.x.
doi: 10.1111/tpj.2011.66.issue-1 |
[17] |
HEMMERLIN A, HARWOOD J L, BACH T J. A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynjournal?[J]. Prog Lipid Res, 2012,51(2):95-148.DOI: 10.1016/j.plipres.2011.12.001.
doi: 10.1016/j.plipres.2011.12.001 |
[18] |
VRANOVÁ E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synjournal[J]. Annu Rev Plant Biol, 2013,64:665-700.DOI: 10.1146/annurev-arplant-050312-120116.
doi: 10.1146/annurev-arplant-050312-120116 |
[19] |
NAGEL R, SCHMIDT A, PETERS R J. Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynjournal[J]. Planta, 2019,249(1):9-20.DOI: 10.1007/s00425-018-3052-1.
doi: 10.1007/s00425-018-3052-1 |
[20] | PAZOUKI L, NIINEMETS U. Multi-substrate terpene synthases: their occurrence and physiological significance[J]. Front Plant Sci, 2016: 1019-1019. DOI: 10.3389/fpls.2016.01019. |
[21] |
YAMAMURA Y, KUROSAKI F, LEE J B. Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis[J]. Sci Rep, 2017,7:43311.DOI: 10.1038/srep43311.
doi: 10.1038/srep43311 |
[22] | 王毅, 周旭, 毕玮, 等. 思茅松1-脱氧-D-木酮糖-5-磷酸合酶(DXS)基因的克隆及功能分析[J]. 林业科学研究, 2015,28(6):833-838. |
WANG Y, ZHOU X, BI W, et al. Identification and Characterization of a 1-Deoxy-D-xylulose 5-phosphate Synthase Gene From Pinus kesiya var.langbianensis[J]. For Res, 2015,28(6):833-838.DOI: 10.13275/j.cnki.lykxyj.2015.06.011. | |
[23] | 王毅, 周旭, 毕玮, 等. 思茅松HDR基因全长cDNA克隆与序列分析[J]. 广西植物, 2015,35(5):721-727. |
WANG Y, ZHOU X, BI W, et al. Cloning and sequence analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase gene cDNA from Pinus kesiya var.langbianensis[J]. Guihaia, 2015,35(5):721-727.DOI: 10.11931/guihaia.gxzw201409048. | |
[24] | 陈晓明, 陈博雯, 李魁鹏, 等. 马尾松GGPPS基因与产脂力相关性分析[J]. 分子植物育种, 2018,16(16):5247-5254. |
CHEN X M, CHEN B W, LI K P, et al. Correlation analysis of GGPPS gene and resin producing capacity in Pinus massoniana[J]. Mol Plant Breed, 2018,16(16):5247-5254.DOI: 10.13271/j.mpb.016.005247. | |
[25] |
CHEN B W, XIAO Y F, LI J J, et al. Cloning and characterization of geranylgeranyl diphosphate synthetase from Pinus massoniana and its correlation with resin productivity[J]. J For Res, 2018,29(2):311-320.DOI: 10.1007/s11676-017-0443-2.
doi: 10.1007/s11676-017-0443-2 |
[26] |
QI Q, LI R, GAI Y, et al. Cloning and functional identification of farnesyl diphosphate synthase from Pinus massoniana Lamb[J]. J Plant Biochem Biotechnol, 2017,26(2):132-140.DOI: 10.1007/s13562-016-0373-7.
doi: 10.1007/s13562-016-0373-7 |
[27] |
PETERS R J. Two rings in them all: the labdane-related diterpenoids[J]. Nat Prod Rep, 2010,27(11):1521-1530.DOI: 10.1039/c0np00019a.
doi: 10.1039/c0np00019a |
[28] |
ZHOU K, GAO Y, HOY J A, et al. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis[J]. J Biol Chem, 2012,287(9):6840-6850.DOI: 10.1074/jbc.m111.337592.
doi: 10.1074/jbc.M111.337592 |
[29] |
LIU W T, FENG X X, ZHENG Y Y, et al. Structure,function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum[J]. Sci Rep, 2014,4:6214.DOI: 10.1038/srep06214.
doi: 10.1038/srep06214 |
[30] |
KÖKSAL M, HU H Y, COATES R M, et al. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase[J]. Nat Chem Biol, 2011,7(7):431-433.DOI: 10.1038/nchembio.578.
doi: 10.1038/nchembio.578 |
[31] | KÖKSAL M, POTTER K, PETERS R J, et al. 1.55 Å-resolution structure of ent-copalyl diphosphate synthase and exploration of general acid function by site-directed mutagenesis[J]. Biochim et Biophys Acta (BBA)-Gen Subj, 2014,1840(1):184-190.DOI: 10.1016/j.bbagen.2013.09.004. |
[32] |
LI G, KOLLNER T G, YIN Y, et al. Nonseed plant Selaginella moellendorffii has both seed plant and microbial types of terpene synthases[J]. PNAS, 2012,109(36):14711-14715.DOI: 10.1073/pnas.1204300109.
doi: 10.1073/pnas.1204300109 |
[33] |
JIA Q, LI G, KÖLLNER T G, et al. Microbial-type terpene synthase genes occur widely in nonseed land plants,but not in seed plants[J]. PNAS, 2016,113(43):12328-12333.DOI: 10.1073/pnas.1607973113.
doi: 10.1073/pnas.1607973113 |
[34] |
JIA Q, KÖLLNER T G, GERSHENZON J, et al. MTPSLs:new terpene synthases in nonseed plants[J]. Trends Plant Sci, 2018,23(2):121-128.DOI: 10.1016/j.tplants.2017.09.014.
doi: 10.1016/j.tplants.2017.09.014 |
[35] |
XIONG W, FU J, KÖLLNER T G, et al. Biochemical characterization of microbial type terpene synthases in two closely related species of hornworts,Anthoceros punctatus and Anthoceros agrestis[J]. Phytochemistry, 2018,149:116-122.DOI: 10.1016/j.phytochem.2018.02.011.
doi: 10.1016/j.phytochem.2018.02.011 |
[36] |
WHITTINGTON D A, WISE M L, URBANSKY M, et al. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase[J]. PNAS, 2002,99(24):15375-15380.DOI: 10.1073/pnas.232591099.
doi: 10.1073/pnas.232591099 |
[37] |
HYATT D C, YOUN B, ZHAO Y, et al. Structure of limonene synthase,a simple model for terpenoid cyclase catalysis[J]. PNAS, 2007,104(13):5360-5365.DOI: 10.1073/pnas.0700915104.
doi: 10.1073/pnas.0700915104 |
[38] |
HAYASHI K I, KAWAIDE H, NOTOMI M, et al. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens[J]. FEBS Lett, 2006,580(26):6175-6181.DOI: 10.1016/j.febslet.2006.10.018.
doi: 10.1016/j.febslet.2006.10.018 |
[39] |
TRAPP S C, CROTEAU R B. Genomic organization of plant terpene synthases and molecular evolutionary implications[J]. Genetics, 2001,158(2):811-832.DOI: 10.1017/S0016672301005043.
doi: 10.1093/genetics/158.2.811 |
[40] |
HAYASHI K, HORIE K, HIWATASHI Y, et al. Endogenous diterpenes derived from ent-kaurene,a common gibberellin precursor,regulate Protonema differentiation of the moss Physcomitrella patens[J]. Plant Physiol, 2010,153(3):1085-1097.DOI: 10.1104/pp.110.157909.
doi: 10.1104/pp.110.157909 |
[41] |
KEELING C I, DULLAT H K, YUEN M, et al. Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms[J]. Plant Physiol, 2010,152(3):1197-1208.DOI: 10.1104/pp.109.151456.
doi: 10.1104/pp.109.151456 |
[42] |
MORRONE D, CHAMBERS J, LOWRY L, et al. Gibberellin biosynjournal in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum[J]. FEBS Lett, 2009,583(2):475-480.DOI: 10.1016/j.febslet.2008.12.052.
doi: 10.1016/j.febslet.2008.12.052 |
[43] |
HILLWIG M L, XU M, TOYOMASU T, et al. Domain loss has independently occurred multiple times in plant terpene synthase evolution[J]. Plant J, 2011,68(6):1051-1060.DOI: 10.1111/j.1365-313x.2011.04756.x.
doi: 10.1111/tpj.2011.68.issue-6 |
[44] |
MARTIN D M, AUBOURG S, SCHOUWEY M B, et al. Functional annotation,genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly,FLcDNA cloning,and enzyme assays[J]. BMC Plant Biol, 2010,10:226.DOI: 10.1186/1471-2229-10-226.
doi: 10.1186/1471-2229-10-226 |
[45] |
HUANG M, ABEL C, SOHRABI R, et al. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases,TPS02 and TPS03[J]. Plant Physiol, 2010,153(3):1293-1310.DOI: 10.1104/pp.110.154864.
doi: 10.1104/pp.110.154864 |
[46] |
CAO R, ZHANG Y, MANN F M, et al. Diterpene cyclases and the nature of the isoprene fold[J]. Proteins, 2010,78(11):2417-2432.DOI: 10.1002/prot.22751.
doi: 10.1002/prot.v78:11 |
[47] |
GAO Y, HONZATKO R B, PETERS R J. Terpenoid synthase structures: a so far incomplete view of complex catalysis[J]. Nat Prod Rep, 2012,29(10):1153-1175.DOI: 10.1039/c2np20059g.
doi: 10.1039/c2np20059g |
[48] |
KÜLHEIM C, PADOVAN A, HEFER C, et al. The Eucalyptus terpene synthase gene family[J]. BMC Genomics, 2015,16:450.DOI: 10.1186/s12864-015-1598-x.
doi: 10.1186/s12864-015-1598-x |
[49] |
AUBOURG S, LECHARNY A, BOHLMANN J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana[J]. Mol Genet Genomics, 2002,267(6):730-745.DOI: 10.1007/s00438-002-0709-y.
doi: 10.1007/s00438-002-0709-y |
[50] |
IRMISCH S, JIANG Y, CHEN F, et al. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa)[J]. BMC Plant Biol, 2014,14:270.DOI: 10.1186/s12870-014-0270-y.
doi: 10.1186/s12870-014-0270-y |
[51] |
FALARA V, AKHTAR T A, NGUYEN T T, et al. The tomato terpene synthase gene family[J]. Plant Physiol, 2011,157(2):770-789.DOI: 10.1104/pp.111.179648.
doi: 10.1104/pp.111.179648 |
[52] |
CHEN X E, YANG W, ZHANG L Q, et al. Genome-wide identification,functional and evolutionary analysis of terpene synthases in pineapple[J]. Comput Biol Chem, 2017,70:40-48.DOI: 10.1016/j.compbiolchem.2017.05.010.
doi: 10.1016/j.compbiolchem.2017.05.010 |
[53] |
WARREN R L, KEELING C I, YUEN M M, et al. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism[J]. Plant J, 2015,83(2):189-212.DOI: 10.1111/tpj.12886.
doi: 10.1111/tpj.12886 |
[54] |
BIROL I, RAYMOND A, JACKMAN S D, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data[J]. Bioinformatics, 2013,29(12):1492-1497.DOI: 10.1093/bioinformatics/btt178.
doi: 10.1093/bioinformatics/btt178 |
[55] |
NYSTEDT B, STREET N R, WETTERBOM A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013,497(7451):579-584.DOI: 10.1038/nature12211.
doi: 10.1038/nature12211 |
[56] |
NEALE D B, WEGRZYN J L, STEVENS K A, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J]. Genome Biol, 2014,15(3):R59.DOI: 10.1186/gb-2014-15-3-r59.
doi: 10.1186/gb-2014-15-3-r59 |
[57] |
WEGRZYN J L, LIECHTY J D, STEVENS K A, et al. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation[J]. Genetics, 2014,196(3):891-909.DOI: 10.1534/genetics.113.159996.
doi: 10.1534/genetics.113.159996 |
[58] | 陈小娥. 火炬松萜类合成途径中PT、TPS和P450基因的鉴定与功能分析[D]. 西安:陕西师范大学, 2017. |
CHEN X E. Identification and functional analysis of PT,TPS and P450 genes in the terpene synthesis pathway of loblolly pine[D]. Xi’an:Shaanxi Normal University, 2017. | |
[59] |
KEELING C I, WEISSHAAR S, RALPH S G, et al. Transcriptome mining,functional characterization,and phylogeny of a large terpene synthase gene family in spruce (Picea spp.)[J]. BMC Plant Biol, 2011,11:43.DOI: 10.1186/1471-2229-11-43.
doi: 10.1186/1471-2229-11-43 |
[60] |
CELEDON J M, YUEN M M S, CHIANG A, et al. Cell-type-and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense[J]. Plant J, 2017,92(4):710-726.DOI: 10.1111/tpj.13673.
doi: 10.1111/tpj.2017.92.issue-4 |
[61] |
KARUNANITHI P S, ZERBE P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity[J]. Front Plant Sci, 2019,10:1166.DOI: 10.3389/fpls.2019.01166.
doi: 10.3389/fpls.2019.01166 |
[62] |
PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009,457(7229):551-556.DOI: 10.1038/nature07723.
doi: 10.1038/nature07723 |
[63] |
PETERS R J. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynjournal in rice and other cereal crop plants[J]. Phytochemistry, 2006,67(21):2307-2317.DOI: 10.1016/j.phytochem.2006.08.009.
doi: 10.1016/j.phytochem.2006.08.009 |
[64] |
ALICANDRI E, PAOLACCI A R, OSADOLOR S, et al. On the evolution and functional diversity of terpene synthases in the Pinus species: a review[J]. J Mol Evol, 2020,88(3):253-283.DOI: 10.1007/s00239-020-09930-8.
doi: 10.1007/s00239-020-09930-8 |
[65] |
MARTIN D M, FÄLDT J, BOHLMANN J. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily[J]. Plant Physiol, 2004,135(4):1908-1927.DOI: 10.1104/pp.104.042028.
doi: 10.1104/pp.104.042028 |
[66] |
CELEDON J M, BOHLMANN J. Oleoresin defenses in conifers: chemical diversity,terpene synthases and limitations of oleoresin defense under climate change[J]. New Phytol, 2019,224(4):1444-1463.DOI: 10.1111/nph.15984.
doi: 10.1111/nph.v224.4 |
[67] |
YOSHIKUNI Y, FERRIN T E, KEASLING J D. Designed divergent evolution of enzyme function[J]. Nature, 2006,440(7087):1078-1082.DOI: 10.1038/nature04607.
doi: 10.1038/nature04607 |
[68] |
VATTEKKATTE A, GARMS S, BRANDT W, et al. Enhanced structural diversity in terpenoid biosynjournal: enzymes,substrates and cofactors[J]. Org Biomol Chem, 2018,16(3):348-362.DOI: 10.1039/c7ob02040f.
doi: 10.1039/C7OB02040F |
[69] |
HALL D E, ROBERT J A, KEELING C I, et al. An integrated genomic,proteomic and biochemical analysis of (+)-3-carene biosynjournal in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil[J]. Plant J, 2011,65(6):936-948.DOI: 10.1111/j.1365-313x.2010.04478.x.
doi: 10.1111/tpj.2011.65.issue-6 |
[70] |
HUBER D P W, PHILIPPE R N, GODARD K A, et al. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir,Pseudotsuga menziesii[J]. Phytochemistry, 2005,66(12):1427-1439.DOI: 10.1016/j.phytochem.2005.04.030.
doi: 10.1016/j.phytochem.2005.04.030 |
[71] |
HALL D E, YUEN M M S, JANCSIK S, et al. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle,lodgepole pine (Pinus contorta) and Jack pine (Pinus banksiana)[J]. BMC Plant Biol, 2013,13:80.DOI: 10.1186/1471-2229-13-80.
doi: 10.1186/1471-2229-13-80 |
[72] |
PHILLIPS M A, WILDUNG M R, WILLIAMS D C, et al. cDNA isolation,functional expression,and characterization of (+)-alpha-pinene synthase and (-)-alpha-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynjournal[J]. Arch Biochem Biophys, 2003,411(2):267-276.DOI: 10.1016/s0003-9861(02)00746-4.
doi: 10.1016/S0003-9861(02)00746-4 |
[73] |
TRINDADE H, SENA I, FIGUEIREDO A C. Characterization of α-pinene synthase gene in Pinus pinaster and P.pinea in vitro cultures and differential gene expression following Bursaphelenchus xylophilus inoculation[J]. Acta Physiol Plant, 2016,38(6):143.DOI: 10.1007/s11738-016-2159-x.
doi: 10.1007/s11738-016-2159-x |
[74] | 雷蕾. 湿地松TPS基因同源克隆及其与产脂性状的关联分析[D]. 南昌:江西农业大学, 2014. |
LEI L. TPS genes homology cloning and its association analysis with resin traits on Pinus elliottii[D]. Nanchang:Jiangxi Agricultural University, 2014. | |
[75] | 雷蕾, 潘显强, 张露, 等. 湿地松左旋β-蒎烯合成酶基因PeTPS-(-)BPin的同源克隆及生物信息学分析[J]. 江西农业大学学报, 2015,37(2):205-211. |
LEI L, PAN X Q, ZHANG L, et al. An analysis of cloning and bioinformatics of sinistral beta pinene synthetase gene Pe TPS-(-) BPin in Pinus elliottii[J]. Acta Agric Univ Jiangxiensis, 2015,37(2):205-211.DOI: 10.13836/j.jjau.2015031. | |
[76] | 魏永成. 接种松材线虫后抗性马尾松的防御物质变化及转录组分析[D]. 北京:中国林业科学研究院, 2016. |
WEI Y C. Variation of defensive substance and transcriptome analysis of different resistant Pinus massoniana inoculated by pine wood nematode[D]. Beijing:Chinese Academy of Forestry, 2016. | |
[77] | 陈晓明. 马尾松产脂相关基因挖掘及表达规律研究[D]. 北京:中国林业科学研究院, 2018. |
CHEN X M. Study on discovery and expression pattern of the genes related to rosin formation in Pinus massoniana[D]. Beijing:Chinese Academy of Forestry, 2018. | |
[78] |
BOHLMANN J, PHILLIPS M, RAMACHANDIRAN V, et al. cDNA cloning,characterization,and functional expression of four new monoterpene synthase members of the tpsd gene family from grand fir (Abies grandis)[J]. Arch Biochem Biophys, 1999,368(2):232-243.DOI: 10.1006/abbi.1999.1332.
doi: 10.1006/abbi.1999.1332 |
[79] |
BOHLMANN J, STEELE C L, CROTEAU R. Monoterpene synthases from grand fir (Abies grandis):cDNA isolation,characterization,and functional expression of myrcene synthase,(-)-(4S)-limonene synthase,and (-)-(1S,5S)-pinene synthase[J]. J Biol Chem, 1997,272(35):21784-21792.DOI: 10.1074/jbc.272.35.21784.
doi: 10.1074/jbc.272.35.21784 |
[80] |
FÄLDT J, MARTIN D, MILLER B, et al. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression,and cDNA cloning and functional characterization of (+)-3-carene synthase[J]. Plant Mol Biol, 2003,51(1):119-133.DOI: 10.1023/A:1020714403780.
doi: 10.1023/A:1020714403780 |
[81] |
BYUN-MCKAY A, GODARD K A, TOUDEFALLAH M, et al. Wound-induced terpene synthase gene expression in sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil[J]. Plant Physiol, 2006,140(3):1009-1021.DOI: 10.1104/pp.105.071803.
doi: 10.1104/pp.105.071803 |
[82] |
MCKAY S A B, HUNTER W L, GODARD K A, et al. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in sitka spruce[J]. Plant Physiol, 2003,133(1):368-378.DOI: 10.1104/pp.103.022723.
doi: 10.1104/pp.103.022723 |
[83] |
BOHLMANN J, CROCK J, JETTER R, et al. Terpenoid-based defenses in conifers:cDNA cloning,characterization,and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis)[J]. PNAS, 1998,95(12):6756-6761.DOI: 10.1073/pnas.95.12.6756.
doi: 10.1073/pnas.95.12.6756 |
[84] |
STEELE C L, CROCK J, BOHLMANN J, et al. Sesquiterpene synthases from grand fir (Abies grandis):comparison of constitutive and wound-induced activities,and cDNA isolation,characterization,and bacterial expression of δ-selinene synthase and γ-humulene synthase[J]. J Biol Chem, 1998,273(4):2078-2089.DOI: 10.1074/jbc.273.4.2078.
doi: 10.1074/jbc.273.4.2078 |
[85] |
KÖPKE D, SCHRÖDER R, FISCHER H M, et al. Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?[J]. Planta, 2008,228(3):427-438.DOI: 10.1007/s00425-008-0747-8.
doi: 10.1007/s00425-008-0747-8 |
[86] |
KÖPKE D, BEYAERT I, GERSHENZON J, et al. Species-specific responses of pine sesquiterpene synthases to sawfly oviposition[J]. Phytochemistry, 2010,71(8/9):909-917.DOI: 10.1016/j.phytochem.2010.03.017.
doi: 10.1016/j.phytochem.2010.03.017 |
[87] |
ZERBE P, CHIANG A, YUEN M, et al. Bifunctional Cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production[J]. J Biol Chem, 2012,287(15):12121-12131.DOI: 10.1074/jbc.m111.317669.
doi: 10.1074/jbc.M111.317669 |
[88] |
VOGEL B S, WILDUNG M R, VOGEL G, et al. Abietadiene synthase from grand fir (Abies grandis) cDNA isolation,characterization,and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynjournal[J]. J Biol Chem, 1996,271(38):23262-23268.DOI: 10.1074/jbc.271.38.23262.
doi: 10.1074/jbc.271.38.23262 |
[89] |
HALL D E, ZERBE P, JANCSIK S, et al. Evolution of conifer diterpene synthases:diterpene resin acid biosynjournal in lodgepole pine and Jack pine involves monofunctional and bifunctional diterpene synthases[J]. Plant Physiol, 2013,161(2):600-616.DOI: 10.1104/pp.112.208546.
doi: 10.1104/pp.112.208546 |
[90] |
RO D K, BOHLMANN J. Diterpene resin acid biosynjournal in loblolly pine (Pinus taeda):functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO,CYP720B1)[J]. Phytochemistry, 2006,67(15):1572-1578.DOI: 10.1016/j.phytochem.2006.01.011.
doi: 10.1016/j.phytochem.2006.01.011 |
[91] |
ZERBE P, HAMBERGER B, YUEN M M, et al. Gene discovery of modular diterpene metabolism in nonmodel systems[J]. Plant Physiol, 2013,162(2):1073-1091.DOI: 10.1104/pp.113.218347.
doi: 10.1104/pp.113.218347 |
[92] | MAFU S, KARUNANITHI P S, PALAZZO T A, et al. Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):974-979. DOI: 10.1073/pnas.1612901114. |
[93] | 杨章旗. 马尾松高产脂遗传改良研究进展及育种策略[J]. 广西林业科学, 2015,44(4):317-324. |
YANG Z Q. Research progress of high rosin genetic improvement and breeding strategy of Pinus massoniana[J]. Guangxi For Sci, 2015,44(4):317-324.DOI: 10.19692/j.cnki.gfs.2015.04.001. | |
[94] | 谈家金, 郝德君, 潘玉雯, 等. 几种松树挥发物对松材线虫行为的影响[J]. 东北林业大学学报, 2009,37(12):58-59. |
TAN J J, HAO D J, PAN Y W, et al. Effects of several pine volatiles on behavior of Bursaphelenchus xylophilus[J]. J Northeast For Univ, 2009,37(12):58-59.DOI: 10.3969/j.issn.1000-5382.2009.12.019. | |
[95] | 徐福元, 席客, 徐刚, 等. 不同龄级马尾松对松材线虫病抗性的探讨[J]. 南京林业大学学报, 1994,18(3):27-33. |
XU F Y, XI K, XU G, et al. Study on the resistances of various year classes of Pinus massoniana to pine wood nematode (PWN),Bursaphelenchus xylophilus[J]. J Nanjing For Univ, 1994,18(3):27-33. | |
[96] | 赵振东, 胡樨萼, 李冬梅, 等. 抗松材线虫病马尾松种源化学成分与抗性机理研究(第Ⅲ报):接种松材线虫引起抗性马尾松种源中性萜类含量变化关系的研究[J]. 林产化学与工业, 2001,21(3):52-58. |
ZHAO Z D, HU X E, LI D M, et al. Study on chemical components and resistance mechanism to pine wood nematode of masson pine provenance(Ⅲ):study on contents variation of neutral terpenoids of resistant provenance of P.massoniana after inoculating Bursaphelenchus xylophilus[J]. Chem Ind For Prod, 2001,21(3):52-58. | |
[97] | 王颖, 刘振宇, 吕全, 等. 马尾松α-蒎烯合成酶基因cDNA全长克隆及序列分析[J]. 安徽农业科学, 2014,42(13):3808-3811. |
WANG Y, LIU Z Y, LV Q, et al. Cloning and sequence analysis of α-pinene synthase gene from Pinus massoniana[J]. J Anhui Agric Sci, 2014,42(13):3808-3811.DOI: 10.13989/j.cnki.0517-6611.2014.13.110. | |
[98] | 王毅, 朱金鑫, 原晓龙, 等. 基因组步移技术克隆思茅松α-蒎烯合成酶基因及表达分析[J]. 基因组学与应用生物学, 2019,38(6):2699-2705. |
WANG Y, ZHU J X, YUAN X L, et al. Genomic walking cloning of α-pinene synthase gene from Pinus kesiya var.langbianensis and its expression analysis[J]. Genom Appl Biol, 2019,38(6):2699-2705.DOI: 10.13417/j.gab.038.002699. | |
[99] | 李帅, 郭莲怡. 土槿皮乙酸阻滞HepG2肝癌细胞于G2/M期并抑制其侵袭和迁移[J]. 细胞与分子免疫学杂志, 2018,34(1):59-64. |
LI S, GUO L Y. Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells[J]. Chin J Cell Mol Immunol, 2018,34(1):59-64.DOI: 10.13423/j.cnki.cjcmi.008549. | |
[100] |
ZHANG T X, GUO Y H, SHI X J, et al. Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers[J]. Plant Physiol Biochem, 2020,151:391-399.DOI: 10.1016/j.plaphy.2020.03.048.
doi: 10.1016/j.plaphy.2020.03.048 |
[101] |
NOMANI M, SADAT NOORI S A, TOHIDFAR M, et al. Overexpression of TPS2 gene to increase thymol content using Agrobacterium tumefaciens-mediated transformation in Trachyspermum ammi (Qom ecotype)[J]. Ind Crop Prod, 2019,130:63-70.DOI: 10.1016/j.indcrop.2018.12.076.
doi: 10.1016/j.indcrop.2018.12.076 |
[102] |
LI X, XU Y Y, SHEN S L, et al. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synjournal of E-geraniol in sweet orange fruit[J]. J Exp Bot, 2017,68(17):4929-4938.DOI: 10.1093/jxb/erx316.
doi: 10.1093/jxb/erx316 |
[103] |
LV Z, GUO Z, ZHANG L, et al. Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynjournal in Artemisia annua[J]. J Exp Bot, 2019,70(15):3969-3979.DOI: 10.1093/jxb/erz166.
doi: 10.1093/jxb/erz166 |
[104] | 刘彬, 刘青华, 周志春, 等. 基于高通量转录组测序筛选马尾松抗松材线虫病相关基因[J]. 林业科学研究, 2019,32(5):1-10. |
LIU B, LIU Q H, ZHOU Z C, et al. Identification of candidate constitutive expressed resistant genes of pine wilt disease in Pinus massoniana based on high-throughput transcriptome sequencing[J]. For Res, 2019,32(5):1-10.DOI: 10.13275/j.cnki.lykxyj.2019.05.001. | |
[105] |
BAI Q, HE B, CAI Y, et al. Transcriptomic and metabolomic analyses reveal several critical metabolic pathways and candidate genes involved in resin biosynjournal in Pinus massoniana[J]. Mol Genet Genomics, 2020,295(2):327-341.DOI: 10.1007/s00438-019-01624-1.
doi: 10.1007/s00438-019-01624-1 |
[1] | WANG Lianggui, ZENG Guimin, YANG Xiulian, YUE Yuanzheng. The potential application of GGPPS gene in improving plant color and aroma traits [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 1-10. |
[2] | WANG Zhanjun, WU Ziqi, WANG Zhaoxia, OU Zulan, LI Jie, CAI Qianwen, XU Zhongdong, ZHANG Zhaoliang. A comparative study of the evolution and codon usage bias in WOX gene family of three Camellia sinensis cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 71-80. |
[3] | CHEN Wei, CHENG Tielong, JI Jing, WU Yanyan, XIE Tiantian, JIANG Zeping, SHI Shengqing. Identification of three gene families in the GABA shunt and their expression analysis in poplar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 67-77. |
[4] | CHEN Wenwen, WU Huaitong, CHEN Yingnan. Gene duplications and functional divergence analyses of the SPL gene family [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 55-66. |
[5] | LIN Yuan, CHEN Pei, ZHOU Mingming, SHANG Xulan, FANG Shengzuo. Key bioactive substances and their antioxidant activities in Cyclocarya paliurus (Batal.) Iljinskaja leaves collected from natural populations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 10-16. |
[6] | TIAN Xueyao, ZHOU Jie, WANG Baosong, HE Kaiyue, HE Xudong. Cloning and expression pattern analysis of NAC genes in Salix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 119-124. |
[7] | FAN Ziluan, ZHAO Ziroul, ZHAO Xiang, CHEN Kaili, FU Yujie. Purification of total triterpenoids from lingonberry and anti-inflammatory activity in vitro [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 132-138. |
[8] | DONG Jingxiang, REN Li, ZHANG Yuan, YANG Yang, HUANG Haijiao, LI Huiyu. Bioinformatics and expression analysis of BpTCPs in Betula platyphylla Suk. [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 113-118. |
[9] | CHEN Peizhen, WU Xiaogang, WEI Qiang, WU Xing, JI Kongshu. Research progress of lignin synthesis gene in Pinaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 169-176. |
[10] | CAO Yanni, MAO Huimin, SHANG Xulan, FANG Shengzuo, YU Simin. Effect of brewing conditions on the leaching rate of Cyclocarya paliurus tea compounds [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 19-24. |
[11] | FENG Kai, HOU Jing, DAI Xiaogang, LI Shuxian. Analyzing the SPL gene family in Salix suchowensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 55-62. |
[12] | LI Yan, ZHOU Xiaodong, FANG Shengzuo, DENG Bo, SHANG Xulan, YANG Wanxia. Influence of illumination intensity and provenance on triterpenoid accumulation in the leaves of Cyclocarya paliurus seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(05): 52-58. |
[13] | NGUYEN ThiXuyen,YANG Wanxia,FANG Shengzuo,CAO Yanni. Influence of types of basic medium, hormone formulations on accumulation of secondary metabolites in Cyclocarya paliurus suspension cells [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(02): 47-51. |
[14] | JI Kongshu, WANG Panpan, WANG Jinling,RUAN Qianqian, PAN Ting,ZHU Peihuang, GUO Tianwei, LIU Jing. Review on in vitro culture of tree species in Pinaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(01): 142-148. |
[15] | DENG Bo, SHANG Xulan, FANG Shengzuo*, QIAN Chenyun. Optimization of ultrasonicassisted extraction of total triterpenoid compounds from Cyclocarya paliurus leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(06): 101-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||