JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3): 1-11.doi: 10.12302/j.issn.1000-2006.202110041
Previous Articles Next Articles
SHEN Wenjuan1,2(), JI Mei1, LI Mingshi1,2
Received:
2021-10-22
Accepted:
2022-03-20
Online:
2022-05-30
Published:
2022-06-10
CLC Number:
SHEN Wenjuan, JI Mei, LI Mingshi. Review on monitoring methods of the effects of forest changes on regional temperature based on multi-source remote sensing data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 1-11.
Table 1
Summary of remote sensing data and climate data"
类别category | 数据data | 类型type | 分辨率resolution |
---|---|---|---|
遥感数据 remote sensing data | Landsat | 5/7/8/9 | 30 m |
PALSAR | 全球镶嵌数据 | 25 m | |
其他中高分辨率数据 | GF、Sentinel、worldview、RapidEye等 | 米级、亚米级 | |
MCD43系列 | MODIS反照率 | 500 m | |
LST/ET/Albedo_avhrr | MODIS/HiGLASS/GLASS LST/ET/Albedo | 30 m等 | |
气候数据 climate data | 气温/降水 | 气象站、通量站、数据集 | 1 km等 |
日照 | 气象站、通量站、数据集 | 月、年 | |
辐射数据等 | MODIS/GLASS/MERRA-1数据 | 0.5°×2/3°(1 km)、小时、天 | |
其他数据other data | DEM | SRTM、ALOS DEM、STER GDEM | 15 m、30 m、90 m |
Table 2
The primary time series remote sensing detection algorithms of forest changes (> 20 years)"
类型type | 影像类别category | 特征变量variable | 原理theory | 特点trait |
---|---|---|---|---|
自动化与 半自动化 automatic and semi-automatic | Landsat (VCT[ | IFZ、NBR、NDVI、可见光与红外等 | 光谱与分类、轨迹分析、时序物候模型、趋势分析、谐波回归等 | 固定参数设置、数据量大、受图像质量影响大 |
多源数据集成 multi-source data integration | Landsat、PALSAR、Sentinel、GF | 光谱、纹理、极化 | 单一时相推到多时相的空间分析 | 自动化水平待提高、尺度统一问题 |
Table 3
The primary methods for quantifying the biophysical mechanisms of forest changes with integrated remote sensing observations"
类型type | 方法method | 特点trait | 应用范围application range |
---|---|---|---|
全球气候 模式 global climate model | 陆面过程气候 影响模拟研究[ LUCID | 多模式比较计划,针对历史土地利用变化对区域和全球气候的影响,通过多模式比较来确定一致的、可靠的影响,区分模式本身的变率和噪声;多种模式间关于温度变化的差别很大,更多反映出不同模式对土地覆被变化敏感性的差异;存在不能以能量变化解释的温度变化 | 全球毁林、土地利用类型变化等 |
一般环流模式[ GCMS | 最广泛使用的气候模型,预测大尺度大气环流对土地覆盖变化的反馈 | 全球土地覆盖变化 | |
群落气候系统模式[ community climate system | 涉及地表过程的气候模式,可以作为一个独立的模块来测试土地覆盖和土地利用变化对气候的显著影响 | 全球土地覆盖变化 | |
气候模型 (IPSLCM)[ the institute pierre simon Laplace | 由大气模式LMDz(代表大气中基本的动力学和物理过程)与陆面模式ORCHIDEE(代表陆地生态系统植被动态和相互作用的碳循环)组成,将观测到的海表温度(SST)和海冰(SIC)作为下边界条件。中分辨率(~1°× 0.6°),粗分辨率(~4°× 2°) | 全国造林、全球土地覆盖变化等 | |
区域气候 模式 regional climate model | 天气研究及 预报模式[ WRF | 短时期数值天气预报系统,模型中嵌入的陆面模型可以反映温度的昼夜循环和降水等气象特征;能表达区域问题的影响,以更好地理解陆地与大气之间的耦合关系。中尺度的区域气候模型,分辨率为≤20 km,不适用于长期气候模拟 | 内蒙古造林、全国造林绿化、欧洲土地覆盖变化等 |
天气研究及预报 模式的气候扩展[ CWRF | WRF的扩展,在继承WRF本身数值预报功能同时增强了对气候的模拟能力;具有多模式集合预报能力,实现多种设置组合模拟过程 | 我国植树造林及其他区域等 | |
地表能量 平衡模型 surface energy balance model | 内在生物 物理机制模型[ IBM | 空气阻力与表面蒸发变化驱动的长波辐射反馈与能量再分配的结果;外部强迫和内部反馈的区分性强 | 内蒙古、广东及全国造林;高纬度、北美、全球土地覆盖变化等 |
双抗性机制[ TRM | 空气动力阻力和表面阻力控制的辐射强迫和湍流热通量 | 我国西北、内蒙古、美国加州、美国东南等 | |
直接分解温度 度量机制[ DTM | 单个能量通量;不考虑能量再分配过程;归因结果有更高的量级 | 内蒙古、全球土地覆盖变化等 | |
共同之处 common | 与卫星观测结合能够填补站点观测或者模型模拟的不足 |
[1] | 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9):1025-1036. |
HUA W J, CHEN H S, LI X. Review of land use and land cover change in China and associated climatic effects[J]. Adv Earth Sci, 2014, 29(9):1025-1036.DOI: 10.11867/j.issn.1001-8166.2014.09.1025.
doi: 10.11867/j.issn.1001-8166.2014.09.1025 |
|
[2] | 刘纪远, 邵全琴, 黄麟. 大尺度土地利用变化对全球气候的影响[J]. 中国基础科学, 2015, 17(3):32-39. |
LIU J Y, SHAO Q Q, HUANG L. Researches on the impacts of large-scale land use change on global climate[J]. China Basic Sci, 2015, 17(3):32-39.DOI: 10.3969/j.issn.1009-2412.2015.03.006.
doi: 10.3969/j.issn.1009-2412.2015.03.006 |
|
[3] |
CHEN C, PARK T, WANG X H, et al. China and India lead in greening of the world through land-use management[J]. Nat Sustain, 2019, 2:122-129.DOI: 10.1038/s41893-019-0220-7.
doi: 10.1038/s41893-019-0220-7 |
[4] |
SONG X P, HANSEN M C, STEHMAN S V, et al. Global land change from 1982 to 2016[J]. Nature, 2018, 560(7720):639-643.DOI: 10.1038/s41586-018-0411-9.
doi: 10.1038/s41586-018-0411-9 |
[5] |
ALKAMA R, CESCATTI A. Biophysical climate impacts of recent changes in global forest cover[J]. Science, 2016, 351(6273):600-604.DOI: 10.1126/science.aac8083.
doi: 10.1126/science.aac8083 |
[6] |
MAHMOOD R, PIELKE SR R A, HUBBARD K G, et al. Land cover changes and their biogeophysical effects on climate[J]. Int J Climatol, 2014, 34(4):929-953.DOI: 10.1002/joc.3736.
doi: 10.1002/joc.3736 |
[7] |
PERUGINI L, CAPORASO L, MARCONI S, et al. Biophysical effects on temperature and precipitation due to land cover change[J]. Environ Res Lett, 2017, 12(5):053002.DOI: 10.1088/1748-9326/aa6b3f.
doi: 10.1088/1748-9326/aa6b3f |
[8] |
PIELKE SR R A, PITMAN A, NIYOGI D, et al. Land use/land cover changes and climate:modeling analysis and observational evidence[J]. Wiley Interdiscip Rev Clim Change, 2011, 2(6):828-850.DOI: 10.1002/wcc.144.
doi: 10.1002/wcc.144 |
[9] |
BONAN G B. Forests and climate change:forcings,feedbacks,and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449.DOI: 10.1126/science.1155121.
doi: 10.1126/science.1155121 |
[10] |
LI Z L, TANG B H, WU H, et al. Satellite-derived land surface temperature: current status and perspectives[J]. Remote Sens Environ, 2013, 131:14-37.DOI: 10.1016/j.rse.2012.12.008.
doi: 10.1016/j.rse.2012.12.008 |
[11] |
DAVIN E L, DE NOBLET-DUCOUDRÉ N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes[J]. J Clim, 2010, 23(1):97-112.DOI: 10.1175/2009jcli3102.1.
doi: 10.1175/2009jcli3102.1 |
[12] |
LI Y, ZHAO M S, MOTESHARREI S, et al. Local cooling and warming effects of forests based on satellite observations[J]. Nat Commun, 2015, 6:6603.DOI: 10.1038/ncomms7603.
doi: 10.1038/ncomms7603 |
[13] | 朱若柠, 沈文娟, 张亚丽, 等. 基于时间序列MODIS-VCF数据的云南省森林覆盖变化及破碎化分析[J]. 南京林业大学学报(自然科学版), 2019, 43(2):184-190. |
ZHU R N, SHEN W J, ZHANG Y L, et al. Assessing changes in forest coverage and forest fragmentation patterns in Yunnan Province from time series MODIS-VCF products(2000-2016)[J]. J Nanjing For Univ (Nat Sci Ed),2019, 43(2):184-190.DOI: 10.3969/j.issn.1000-2006.201805001.
doi: 10.3969/j.issn.1000-2006.201805001 |
|
[14] | 沈文娟, 徐婷, 李明诗. 中国三大林区森林破碎化及干扰模式变动分析[J]. 南京林业大学学报(自然科学版), 2013, 37(4):75-79. |
SHEN W J, XU T, LI M S. Spatio-temporal changes in forest fragmentation,disturbance patterns over the three giant forested regions of China[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(4):75-79. | |
[15] | 沈文娟, 李明诗, 黄成全. 长时间序列多源遥感数据的森林干扰监测算法研究进展[J]. 遥感学报, 2018, 22(6):1005-1022. |
SHEN W J, LI M S, HUANG C Q. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J]. J Remote Sens, 2018, 22(6):1005-1022.
doi: 10.1080/014311601300074540 |
|
[16] | 贾小凤, 朱红春, 凌峰, 等. 基于Landsat多光谱与PALSAR/PALSAR-2数据的汉江流域森林覆盖变化研究[J]. 长江流域资源与环境, 2021, 30(2):321-329. |
JIA X F, ZHU H C, LING F, et al. Forest cover monitoring and its changes in Hanjiang River Basin based on landsat multispectral and PALSAR/PALSAR-2 data[J]. Resour Environ Yangtze Basin, 2021, 30(2):321-329.DOI: 10.11870/cjlyzyyhj202102007.
doi: 10.11870/cjlyzyyhj202102007 |
|
[17] |
HANSEN M C, POTAPOV P V, MOORE R, et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013, 342(6160):850-853.DOI: 10.1126/science.1244693.
doi: 10.1126/science.1244693 |
[18] | LIANG S, WANG J. Forest cover changes: mapping and climatic impact assessment[M]. New York: Academic Press, 2020:915-952. |
[19] |
PREVEDELLO J A, WINCK G R, WEBER M M, et al. Impacts of forestation and deforestation on local temperature across the globe[J]. PLoS One, 2019, 14(3):e0213368.DOI: 10.1371/journal.pone.0213368.
doi: 10.1371/journal.pone.0213368 |
[20] |
SHEN W J, HE J Y, HUANG C Q, et al. Quantifying the actual impacts of forest cover change on surface temperature in Guangdong,China[J]. Remote Sens, 2020, 12(15):2354.DOI: 10.3390/rs12152354.
doi: 10.3390/rs12152354 |
[21] |
SHEN W J, LI M S, HUANG C Q, et al. Local land surface temperature change induced by afforestation based on satellite observations in Guangdong plantation forests in China[J]. Agric For Meteorol, 2019, 276/277:107641.DOI: 10.1016/j.agrformet.2019.107641.
doi: 10.1016/j.agrformet.2019.107641 |
[22] | 黄春波, 佃袁勇, 周志翔, 等. 基于时间序列统计特性的森林变化监测[J]. 遥感学报, 2015, 19(4):657-668. |
HUANG C B, DIAN Y Y, ZHOU Z X, et al. Forest change detection based on time series images with statistical properties[J]. J Remote Sens, 2015, 19(4):657-668.DOI: 10.11834/jrs.20154104.
doi: 10.11834/jrs.20154104 |
|
[23] |
ARORA V K, MONTENEGRO A. Small temperature benefits provided by realistic afforestation efforts[J]. Nat Geosci, 2011, 4 (8):514-518.DOI: 10.1038/ngeo1182.
doi: 10.1038/ngeo1182 |
[24] |
BONAN G B. Effects of land use on the climate of the United States[J]. Clim Change, 1997, 37(3):449-486.DOI: 10.1023/A:1005305708775.
doi: 10.1023/A:1005305708775 |
[25] | 孙舒婷, 范文义, 张智超. 大兴安岭森林地表温度的遥感估算及分析研究[J]. 森林工程, 2015, 31(3):35-39,80. |
SUN S T, FAN W Y, ZHANG Z C. Remote sensing estimation analysis of land surface temperature in Greater Khingan Mountains forest[J]. For Eng, 2015, 31(3):35-39,80.DOI: 10.16270/j.cnki.slgc.2015.03.009.
doi: 10.16270/j.cnki.slgc.2015.03.009 |
|
[26] |
徐凯健, 曾宏达, 张仲德, 等. 亚热带福建省森林生长季与气温、降水相关性的遥感分析[J]. 地球信息科学学报, 2015, 17(10):1249-1259.
doi: 10.3724/SP.J.1047.2015.01249 |
XU K J, ZENG H D, ZHANG Z D, et al. Relating forest phenology to temperature and precipitation in the subtropical region of Fujian based on time-series MODIS-NDVI[J]. J Geo Inf Sci, 2015, 17(10):1249-1259.DOI: 10.3724/SP.J.1047.2015.01249.
doi: 10.3724/SP.J.1047.2015.01249 |
|
[27] | 尹思阳, 吴文瑾, 李新武. 基于遥感和气象数据的东南亚森林动态变化分析[J]. 遥感技术与应用, 2019, 34(1):166-175. |
YIN S Y, WU W J, LI X W. Analysis of the forest dynamic changes in Southeast Asia based on remote sensing and meteorological data[J]. Remote Sens Technol Appl, 2019, 34(1):166-175.DOI: 10.11873/j.issn.1004-0323.2019.1.0166.
doi: 10.11873/j.issn.1004-0323.2019.1.0166 |
|
[28] |
GE J, GUO W D, PITMAN A J, et al. The nonradiative effect dominates local surface temperature change caused by afforestation in China[J]. J Clim, 2019, 32(14):4445-4471.DOI: 10.1175/jcli-d-18-0772.1.
doi: 10.1175/jcli-d-18-0772.1 |
[29] |
LI Y, ZHAO M S, MILDREXLER D J, et al. Potential and actual impacts of deforestation and afforestation on land surface temperature[J]. J Geophys Res Atmos, 2016, 121(24):14372-14386.DOI: 10.1002/2016JD024969.
doi: 10.1002/2016JD024969 |
[30] | 张小全, 侯振宏. 森林、造林、再造林和毁林的定义与碳计量问题[J]. 林业科学, 2003(2):145-152. |
ZHANG X Q, HOU Z H. Definitions of afforestation,reforestation and deforestation in relations to carbon accounting[J]. Sci Silvae Sin, 2003(2):145-152. | |
[31] | 冯海英, 冯仲科. 基于MODIS LST产品的山东省森林调节温度生态服务价值评估新方法[J]. 林业科学, 2018, 54(2):10-17. |
FENG H Y, FENG Z K. A new method of valuating the ecological service of temperature regulation of forests in Shangdong Province based on MODIS LST products[J]. Sci Silvae Sin, 2018, 54(2):10-17.DOI: 10.11707/j.1001-7488.20180202.
doi: 10.11707/j.1001-7488.20180202 |
|
[32] |
胡茂桂, 王劲峰. 遥感影像混合像元分解及超分辨率重建研究进展[J]. 地理科学进展, 2010, 29(6):747-756.
doi: 10.11820/dlkxjz.2010.06.015 |
HU M G, WANG J F. Mixed-pixel decomposition and super-resolution reconstruction of RS image[J]. Prog Geogr, 2010, 29(6):747-756. | |
[33] |
SHIMADA M, ITOH T, MOTOOKA T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007-2010)[J]. Remote Sens Environ,2014, 155:13-31.DOI: 10.1016/j.rse.2014.04.014.
doi: 10.1016/j.rse.2014.04.014 |
[34] |
REICHE J, LUCAS R, MITCHELL A L, et al. Combining satellite data for better tropical forest monitoring[J]. Nature Clim Change, 2016, 6(2):120-122.DOI: 10.1038/nclimate2919.
doi: 10.1038/nclimate2919 |
[35] |
SHEN W J, LI M S, HUANG C Q, et al. Mapping annual forest change due to afforestation in Guangdong Province of China using active and passive remote sensing data[J]. Remote Sens, 2019, 11(5):490.DOI: 10.3390/rs11050490.
doi: 10.3390/rs11050490 |
[36] | 刘睿, 王志勇, 高瑞. 时序SAR影像的干旱地区土地利用分类应用[J]. 测绘科学, 2021, 46(10):90-97. |
LIU R, WANG Z Y, GAO R. Application of time series SAR image in land use classification in arid area[J]. Sci Surv Mapp, 2021, 46(10):90-97.DOI: 10.16251/j.cnki.1009-2307.2021.10.013.
doi: 10.16251/j.cnki.1009-2307.2021.10.013 |
|
[37] |
LIU Y N, GONG W S, HU X Y, et al. Forest type identification with random forest using sentinel-1A,sentinel-2A,multi-temporal landsat-8 and DEM data[J]. Remote Sens, 2018, 10(6):946.DOI: 10.3390/rs10060946.
doi: 10.3390/rs10060946 |
[38] | 侍昊, 沈文娟, 李杨, 等. 高分系列卫星影像特征及其在太湖生态环境监测中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40(6):63-68. |
SHI H, SHEN W J, LI Y, et al. Characteristics of GF images and application in eco-environmental monitoring in Taihu Lake[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(6):63-68.DOI: 10.3969/j.issn.1000-2006.2016.06.010.
doi: 10.3969/j.issn.1000-2006.2016.06.010 |
|
[39] |
LIANG S L, CHENG J, JIA K, et al. The global land surface satellite (GLASS) product suite[J]. Bull Am Meteorol Soc, 2021, 102(2):323-337.DOI: 10.1175/bams-d-18-0341.1.
doi: 10.1175/bams-d-18-0341.1 |
[40] | 梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6):618-671. |
LIANG S L, BAI R, CHEN X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. J Remote Sens, 2020, 24(6):618-671. | |
[41] |
SILVESTRI M, ROMANIELLO V, HOOK S, et al. First comparisons of surface temperature estimations between ECOSTRESS,ASTER and Landsat 8 over Italian volcanic and geothermal areas[J]. Remote Sens, 2020, 12(1):184.DOI: 10.3390/rs12010184.
doi: 10.3390/rs12010184 |
[42] |
GENG L Y, MA M G, YU W P, et al. Validation of the MODIS NDVI products in different land-use types using in situ measurements in the Heihe River basin[J]. IEEE Geosci Remote Sens Lett, 2014, 11(9):1649-1653.DOI: 10.1109/LGRS.2014.2314134.
doi: 10.1109/LGRS.2014.2314134 |
[43] |
SONG Z J, LI R H, QIU R Y, et al. Global land surface temperature influenced by vegetation cover and PM2.5 from 2001 to 2016[J]. Remote Sens, 2018, 10(12):2034.DOI: 10.3390/rs10122034.
doi: 10.3390/rs10122034 |
[44] |
JUSTICE C O, TOWNSHEND J R G, VERMOTE E F, et al. An overview of MODIS land data processing and product status[J]. Remote Sens Environ, 2002, 83(1/2):3-15.DOI: 10.1016/S0034-4257(02)00084-6.
doi: 10.1016/S0034-4257(02)00084-6 |
[45] | 徐辉, 潘萍, 杨武, 等. 基于多源遥感影像的森林资源分类及精度评价[J]. 江西农业大学学报, 2019, 41(4):751-760. |
XU H, PAN P, YANG W, et al. Classification and accuracy evaluation of forest resources based on multi-source remote sensing images[J]. Acta Agric Univ Jiangxiensis, 2019, 41(4):751-760.DOI: 10.13836/j.jjau.2019087.
doi: 10.13836/j.jjau.2019087 |
|
[46] |
BRIGHT R M, DAVIN E, O’HALLORAN T, et al. Local temperature response to land cover and management change driven by non-radiative processes[J]. Nat Clim Chang, 2017, 7(4):296-302.DOI: 10.1038/nclimate3250.
doi: 10.1038/nclimate3250 |
[47] |
HUANG C Q, GOWARD S N, MASEK J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sens Environ, 2010, 114(1):183-198.DOI: 10.1016/j.rse.2009.08.017.
doi: 10.1016/j.rse.2009.08.017 |
[48] |
KENNEDY R E, YANG Z Q, COHEN W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.Land Trendr: temporal segmentation algorithms[J]. Remote Sens Environ, 2010, 114(12):2897-2910.DOI: 10.1016/j.rse.2010.07.008.
doi: 10.1016/j.rse.2010.07.008 |
[49] | 沈文娟, 李明诗. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J]. 生态学报, 2017, 37(5):1438-1449. |
SHEN W J, LI M S. Mapping disturbance and recovery of plantation forests in southern China using yearly Landsat time series observations[J]. Acta Ecol Sin, 2017, 37(5):1438-1449.DOI: 10.5846/stxb201510142074.
doi: 10.5846/stxb201510142074 |
|
[50] |
ZHU Z, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sens Environ, 2014, 144:152-171.DOI: 10.1016/j.rse.2014.01.011.
doi: 10.1016/j.rse.2014.01.011 |
[51] |
DEVRIES B, VERBESSELT J, KOOISTRA L, et al. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series[J]. Remote Sens Environ, 2015, 161:107-121.DOI: 10.1016/j.rse.2015.02.012.
doi: 10.1016/j.rse.2015.02.012 |
[52] |
BELGIU M, STEIN A. Spatiotemporal image fusion in remote sensing[J]. Remote Sens, 2019, 11(7):818.DOI: 10.3390/rs11070818.
doi: 10.3390/rs11070818 |
[53] | 任冲, 鞠洪波, 张怀清, 等. 多源数据林地类型的精细分类方法[J]. 林业科学, 2016, 52(6):54-65. |
REN C, JU H B, ZHANG H Q, et al. Multi-source data for forest land type precise classification[J]. Sci Silvae Sin, 2016, 52(6):54-65.DOI: 10.11707/j.1001-7488.20160607.
doi: 10.11707/j.1001-7488.20160607 |
|
[54] | 张晓羽, 李凤日, 甄贞, 等. 基于随机森林模型的陆地卫星-8遥感影像森林植被分类[J]. 东北林业大学学报, 2016, 44(6):53-57,74. |
ZHANG X Y, LI F R, ZHEN Z, et al. Forest vegetation classification of Landsat 8 remote sensing image based on random forests model[J]. J Northeast For Univ, 2016, 44(6):53-57,74.DOI: 10.13759/j.cnki.dlxb.2016.06.005.
doi: 10.13759/j.cnki.dlxb.2016.06.005 |
|
[55] |
LIU L Y, TANG H, CACCETTA P, et al. Mapping afforestation and deforestation from 1974 to 2012 using Landsat time-series stacks in Yulin District,a key region of the Three-North Shelter region,China[J]. Environ Monit Assess, 2013, 185(12):9949-9965.DOI: 10.1007/s10661-013-3304-2.
doi: 10.1007/s10661-013-3304-2 |
[56] |
ZHAO F, SUN R, ZHONG L H, et al. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning[J]. Remote Sens Environ, 2022, 269:112822.DOI: 10.1016/j.rse.2021.112822.
doi: 10.1016/j.rse.2021.112822 |
[57] |
QIN Y, XIAO X, DONG J, et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000-2017 [J]. Nat Sustain,2019, 2 (8):764-772.DOI: 10.1038/s41893-019-0336-9.
doi: 10.1038/s41893-019-0336-9 |
[58] |
MIZUOCHI H, HAYASHI M, TADONO T. Development of an operational algorithm for automated deforestation mapping via the Bayesian integration of long-term optical and microwave satellite data[J]. Remote Sens, 2019, 11(17):2038.DOI: 10.3390/rs11172038.
doi: 10.3390/rs11172038 |
[59] |
CHEN L, DIRMEYER P A. Reconciling the disagreement between observed and simulated temperature responses to deforestation[J]. Nat Commun, 2020, 11(1):202.DOI: 10.1038/s41467-019-14017-0.
doi: 10.1038/s41467-019-14017-0 |
[60] |
赵彩杉, 曾刚, 张丽娟, 等. 基于Google Earth和MODIS陆地数据的农林地转换对地表温度的影响:以长江中下游及毗邻地区为例[J]. 地理科学进展, 2019, 38(5):698-708.
doi: 10.18306/dlkxjz.2019.05.007 |
ZHAO C S, ZENG G, ZHANG L J, et al. Effects of cropland and woodland conversion on land surface temperature based on Google Earth and MODIS land data: a case study of the middle and lower reaches of the Yangtze River Basin and its adjacent areas[J]. Prog Geogr, 2019, 38(5):698-708. | |
[61] | 孙云, 于德永, 曹茜, 等. 土地利用/土地覆盖变化对区域气候影响的生物地球物理途径研究进展[J]. 北京师范大学学报(自然科学版), 2015, 51(2):189-196. |
SUN Y, YU D Y, CAO Q, et al. Review on the biogeophysical effects of changes in land use and land cover on regional climate: research progress[J]. J Beijing Norm Univ (Nat Sci),2015, 51(2):189-196.DOI: 10.16360/j.cnki.jbnuns.2015.02.016.
doi: 10.16360/j.cnki.jbnuns.2015.02.016 |
|
[62] |
HE T, SHAO Q Q, CAO W, et al. Satellite-observed energy budget change of deforestation in northeastern China and its climate implications[J]. Remote Sens, 2015, 7(9):11586-11601.DOI: 10.3390/rs70911586.
doi: 10.3390/rs70911586 |
[63] |
PITMAN A J, DE NOBLET-DUCOUDRÉ N, CRUZ F T, et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study[J]. Geophys Res Lett, 2009, 36(14):L14814.DOI: 10.1029/2009GL039076.
doi: 10.1029/2009GL039076 |
[64] |
YU L X, ZHANG S W, TANG J M, et al. The effect of deforestation on the regional temperature in northeastern China[J]. Theor Appl Climatol, 2015, 120(3/4):761-771.DOI: 10.1007/s00704-014-1186-z.
doi: 10.1007/s00704-014-1186-z |
[65] |
LEE X H, GOULDEN M L, HOLLINGER D Y, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479(7373):384-387.DOI: 10.1038/nature10588.
doi: 10.1038/nature10588 |
[66] |
DE NOBLET-DUCOUDRÉ N, BOISIER J P, PITMAN A, et al. Determining robust impacts of land-use-induced land cover changes on surface climate over north America and Eurasia: results from the first set of LUCID experiments[J]. J Climate, 2012, 25(9):3261-3281.DOI: 10.1175/jcli-d-11-00338.1.
doi: 10.1175/jcli-d-11-00338.1 |
[67] |
BAIDYA ROY S, HURTT G C, WEAVER C P, et al. Impact of historical land cover change on the July climate of the United States[J]. J Geophys Res Atmos, 2003, 108(D24):4793.DOI: 10.1029/2003JD003565.
doi: 10.1029/2003JD003565 |
[68] |
COOLEY H S, RILEY W J, TORN M S, et al. Impact of agricultural practice on regional climate in a coupled land surface mesoscale model[J]. J Geophys Res Atmos, 2005, 110(D3):D03113.DOI: 10.1029/2004JD005160.
doi: 10.1029/2004JD005160 |
[69] |
COLLINS W D, BITZ C M, BLACKMON M L, et al. The community climate system model Version 3 (CCSM3)[J]. J Clim, 2006, 19(11):2122-2143.DOI: 10.1175/jcli3761.1.
doi: 10.1175/jcli3761.1 |
[70] |
DUFRESNE J L, FOUJOLS M A, DENVIL S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5[J]. Clim Dyn, 2013, 40(9/10):2123-2165.DOI: 10.1007/s00382-012-1636-1.
doi: 10.1007/s00382-012-1636-1 |
[71] |
ZENG X M, WU Z H, XIONG S Y, et al. Sensitivity of simulated short-range high-temperature weather to land surface schemes by WRF[J]. Sci China Earth Sci, 2011, 54(4):581-590.DOI: 10.1007/s11430-011-4181-6.
doi: 10.1007/s11430-011-4181-6 |
[72] |
LIANG X Z, XU M, YUAN X, et al. Regional climate-weather research and forecasting model[J]. Bull Am Meteorol Soc, 2012, 93(9):1363-1387.DOI: 10.1175/bams-d-11-00180.1.
doi: 10.1175/bams-d-11-00180.1 |
[73] |
RIGDEN A J, LI D. Attribution of surface temperature anomalies induced by land use and land cover changes[J]. Geophys Res Lett, 2017, 44(13):6814-6822.DOI: 10.1002/2017GL073811.
doi: 10.1002/2017GL073811 |
[74] |
JUANG J Y, KATUL G, SIQUEIRA M, et al. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States[J]. Geophys Res Lett, 2007, 34(21):L21408.DOI: 10.1029/2007GL031296.
doi: 10.1029/2007GL031296 |
[75] |
LUYSSAERT S, JAMMET M, STOY P C, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature[J]. Nat Clim Chang, 2014, 4(5):389-393.DOI: 10.1038/nclimate2196.
doi: 10.1038/nclimate2196 |
[76] |
ZHAO K G, JACKSON R B. Biophysical forcings of land-use changes from potential forestry activities in north America[J]. Ecol Monogr, 2014, 84(2):329-353.DOI: 10.1890/12-1705.1.
doi: 10.1890/12-1705.1 |
[77] |
DUVEILLER G, HOOKER J, CESCATTI A. The mark of vegetation change on Earth’s surface energy balance[J]. Nat Commun, 2018, 9(1):679.DOI: 10.1038/s41467-017-02810-8.
doi: 10.1038/s41467-017-02810-8 |
[78] |
PENG S S, PIAO S L, ZENG Z Z, et al. Afforestation in China cools local land surface temperature[J]. PNAS, 2014, 111(8):2915-2919.DOI: 10.1073/pnas.1315126111.
doi: 10.1073/pnas.1315126111 |
[79] |
TANG B J, ZHAO X, ZHAO W Q. Local effects of forests on temperatures across Europe[J]. Remote Sens, 2018, 10(4):529.DOI: 10.3390/rs10040529.
doi: 10.3390/rs10040529 |
[80] |
LI Y, PIAO S L, CHEN A P, et al. Local and teleconnected temperature effects of afforestation and vegetation greening in China[J]. Natl Sci Rev, 2019, 7(5):897-912.DOI: 10.1093/nsr/nwz132.
doi: 10.1093/nsr/nwz132 |
[81] |
LIAO W L, LIU X P, BURAKOWSKI E, et al. Sensitivities and responses of land surface temperature to deforestation-induced biophysical changes in two global earth system models[J]. J Clim, 2020, 33(19):8381-8399.DOI: 10.1175/jcli-d-19-0725.1.
doi: 10.1175/jcli-d-19-0725.1 |
[82] |
WICKHAM J D, WADE T G, RIITTERS K H. Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the continental United States[J]. Glob Ecol Biogeogr, 2013, 22(5):620-629.DOI: 10.1111/geb.12013.
doi: 10.1111/geb.12013 |
[83] |
ANDERSON R G, CANADELL J G, RANDERSON J T, et al. Biophysical considerations in forestry for climate protection[J]. Front Ecol Environ, 2011, 9(3):174-182.DOI: 10.1890/090179.
doi: 10.1890/090179 |
[84] | 黄麟, 翟俊, 宁佳. 不同气候带退耕还林对区域气温的影响差异分析[J]. 自然资源学报, 2017, 32(11):1832-1843. |
HUANG L, ZHAI J, NING J. Impacts of returning farmland to forest on regional air temperature in different climatic zones[J]. J Nat Resour, 2017, 32(11):1832-1843.DOI: 10.11849/zrzyxb.20161061.
doi: 10.11849/zrzyxb.20161061 |
|
[85] |
WANG L M, TIAN F Q, WANG X F, et al. Attribution of the land surface temperature response to land-use conversions from bare land[J]. Glob Planet Change, 2020, 193:103268.DOI: 10.1016/j.gloplacha.2020.103268.
doi: 10.1016/j.gloplacha.2020.103268 |
[86] |
LIAO W L, RIGDEN A J, LI D. Attribution of local temperature response to deforestation[J]. J Geophys Res Biogeosci, 2018, 123(5):1572-1587.DOI: 10.1029/2018JG004401.
doi: 10.1029/2018JG004401 |
[87] |
JACH L, WARRACH-SAGI K, INGWERSEN J, et al. Land cover impacts on land-atmosphere coupling strength in climate simulations with WRF over Europe[J]. J Geophys Res Atmos, 2020, 125(18):e2019JD031989.DOI: 10.1029/2019JD031989.
doi: 10.1029/2019JD031989 |
[1] | XIANG Jun, YAN Enping, JIANG Jiawei, SONG Yabin, WEI Wei, MO Dengkui. Research on forest change detection based on fully convolutional network and low resolution label [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 187-195. |
[2] | ZHU Ruoning, SHEN Wenjuan, ZHANG Yali, LI Mingshi. Assessing changes in forest coverage and forest fragmentation patterns in Yunnan Province from time series MODIS-VCF products(2000-2016) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 184-190. |
[3] | ZHOU Yu, ZHANG Li-ning, WU Li-mei. Design and Implementation of Multi-source Remote Sensing Image Fusion Platform [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(04): 85-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||