JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1): 11-20.doi: 10.12302/j.issn.1000-2006.202402006
Previous Articles Next Articles
Received:
2024-02-07
Revised:
2024-10-15
Online:
2025-01-30
Published:
2025-01-21
Contact:
AN Xinmin
E-mail:961788757@qq.com;anxinmin@bjfu.edu.cn
CLC Number:
JIANG Bo, AN Xinmin. Precise genomic editing technology and its application in the improvement of woody plants[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 11-20.
Fig. 2
The principle of cytosine base editor (modified from references[14]) Double stranded DNA with C (brown) is recognized by Cas9 through PAM (red) and binds to sgRNA (purple). Under the action of cytosine deaminase (green), C is catalyzed to U, which is then transformed into AT base pairs through DNA repair and replication."
Table 1
Different types of cytosine base editors"
胞嘧啶碱基编辑器 cytosine base editor | PAM序列 PAM sequence | 编辑器结构 editor structure | NLS个数 number of NLS | 活性窗口位置 active window position | 参考文献 reference |
---|---|---|---|---|---|
BE1 | NGG | rAPOBEC1-dCas9 | 1 | 4—8 | [ |
BE2 | NGG | rAPOBEC1-dCas9-UGI | 1 | 4—8 | [ |
BE3 | NGG | rAPOBEC1-nCas9(D10A) -UGI | 1 | 4—8 | [ |
hA3A-BE3 | NGG | hAPOBEC3A-nCas9(D10A)-UGI | 1 | 2—13 | [ |
BE3-NG | NG | rAPOBEC1-nCas9(D10A)-NG-UGI | 1 | 4—8 | [ |
Target-AID | NGG | nCas9(D10A)-PmCDA1-UGI | 1 | 2—8 | [ |
BE4 | NGG | rAPOBEC1-nCas9(D10A)-UGI-UGI | 1 | 4—8 | [ |
BE4max | NGG | rAPOBEC1-nCas9(D10A)-UGI-UGI | 2 | 4—8 | [ |
TAM | NGG | dCas9-hAIDx | 1 | 4—10 | [ |
xBE3 | NGN、GAA、GAT | rAPOBEC1-nxCas9(D10A)-UGI | 1 | 4—8 | [ |
Fig. 3
The principle of adenine base editor (modified from references[22]) Double stranded DNA with A (brown) is recognized by Cas9 through PAM (red) and binds to sgRNA (purple). Under the action of adenine deaminase (pink), A is catalyzed to I, which is then transformed into CG base pairs through DNA repair and replication."
Table 2
Different types of adenine base editors"
腺嘌呤碱基编辑器 adenine base editor | PAM序列 PAM sequence | 编辑器结构 editor structure | NLS个数 number of NLS | 活性窗口位置 active window position | 参考文献 reference |
---|---|---|---|---|---|
ABE7.10 | NGG | TadA-TadA*-nCas9(D10A) | 1 | 4—7 | [ |
xABE | NGN、GAA、GAT | TadA-TadA*-nxCas9(D10A) | 1 | 4—7 | [ |
xABEmax | NGN、GAA、GAT | TadA-TadA*-nxCas9(D10A) | 2 | 4—8 | [ |
Fig. 4
The principle of glycosylase base editor(modified from references[24]) Double stranded DNA with C (brown) is recognized by Cas9 through PAM (red) and binds to sgRNA (purple). Under the action of cytosine deaminase (light red), C is catalyzed to U, which is hydrolyzed by UNG (gray) to form an AP site. After DNA repair and replication, it causes translocation."
Fig. 5
The principle of dual base editor (modified from references[25]) Double stranded DNA with A and C (brown) is recognized by Cas9 through PAM (red) and binds to sgRNA (purple). Under the action of cytosine deaminase (gray) and adenine deaminase (pink), C is catalyzed to U, A is catalyzed to I, and after DNA repair and replication, it is transformed into AT and CG base pairs, respectively."
Fig. 6
The principle of prime editor(modified from references[29]) Double stranded DNA is recognized by PAM (red) and binds to the pegRNA complex, while non complementary strands are cleaved by RT (cyan). The resulting primer sequence binds to PBS and initiates reverse transcription using the pegRNA RT template (brown). Finally, editing is completed through DNA repair and replication."
Table 3
Applications of precision editing technology in disease therapy and herbicide resistance"
编辑器类型 editor type | 优点 advantage | 不足 limitation | 物种 species | 应用 application | 参考文献 reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
胞嘧啶碱基编辑器 CBE | 编辑效率相对较高 high editing efficiency | 只能进行几种碱基转换 only a few base transitions can be performed 脱靶效应高 high off target effect 编辑范围局限 limitations of editing scope | 小鼠 Mus musculus | 胆固醇疾病 cholesterol disorders | [ | |||||
猕猴 Macaca mulatta | 胆固醇疾病 cholesterol disorders | [ | ||||||||
人类 Homo sapiens | β-地中海贫血症 β-thalassemia | [ | ||||||||
马凡综合征 marfan syndrome | [ | |||||||||
水稻 Oryza sativa | ALS基因 | [ | ||||||||
玉米 Zea mays | ALS基因 | [ | ||||||||
小麦 Triticum aestivum | ALS基因 | [ | ||||||||
ACCase基因 | [ | |||||||||
烟草 Nicotiana tabacum | ALS基因 | [ | ||||||||
甜橙 Citrus sinensis | ALS基因 | [ | ||||||||
杨树 Populus | Platz基因 | [ | ||||||||
腺嘌呤碱基编辑器 ABE | 小鼠 Mus musculus | Ⅰ型酪氨酸血症 yype Ⅰ tyrosinemia | [ | |||||||
杜氏肌营养不良症 duchenne muscular dystrophy | [ | |||||||||
Ⅰ型黏多糖病 type Ⅰ mucopolysaccharidosis | [ | |||||||||
早衰症 progeria | [ | |||||||||
水稻 O. sativa | ACCase基因 | [ | ||||||||
甜橙 C. sinensis | 溃疡病 ulcer | [ | ||||||||
葡萄柚 C. paradise | 溃疡病 ulcer | [ | ||||||||
糖基化酶碱基 编辑器GBE | 水稻 O. sativa | ALS基因 | [ | |||||||
先导编辑器 PE | 能够实现12种碱基替换 12 types of base substitutions can be achieved 多碱基替换 multiple base substitutions 小片段的插入或删除 insertion or deletion of small fragments 脱靶效应低 low off target effect 编辑范围广 wide editing scope | 编辑效率相对较低 low editing efficiency 使用设计过程复杂 complex design process | 人类 H. sapiens | 杜氏肌营养不良症 duchenne muscular dystrophy | [ | |||||
小鼠 Mus musculus | Ⅰ型酪氨酸血症 yype Ⅰ tyrosinemia | [ | ||||||||
雷柏氏先天性黑矇症 leber’s congenital melanosis | [ | |||||||||
水稻 O. sativa | ACCase基因 | [ | ||||||||
玉米 Z. mays | ALS基因 | [ | ||||||||
ACCase基因 | [ |
[1] | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712.DOI: 10.1126/science.1138140. |
[2] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.DOI: 10.1126/science.1225829. |
[3] | MOLLA K A, SRETENOVIC S, BANSAL K C, et al. Precise plant genome editing using base editors and prime editors[J]. Nat Plants, 2021, 7(9):1166-1187.DOI: 10.1038/s41477-021-00991-1. |
[4] | MALI P, ESVELT K M, CHURCH G M. Cas9 as a versatile tool for engineering biology[J]. Nat Methods, 2013, 10(10):957-963.DOI: 10.1038/nmeth.2649. |
[5] | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183.DOI: 10.1016/j.cell.2013.02.022. |
[6] | STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nat Commun, 2019, 10(1):212.DOI: 10.1038/s41467-018-08224-4. |
[7] | MA X L, ZHU Q L, CHEN Y L, et al. CRISPR/Cas9 platforms for genome editing in plants:developments and applications[J]. Mol Plant, 2016, 9(7):961-974.DOI: 10.1016/j.molp.2016.04.009. |
[8] | SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annu Rev Genet, 2011, 45:247-271.DOI: 10.1146/annurev-genet-110410-132435. |
[9] | CHANG L, GRAHAM P H, HAO J, et al. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis,reducing autophagy,suppressing NHEJ and HR repair pathways[J]. Cell Death Dis, 2014, 5(10):e1437.DOI: 10.1038/cddis.2014.415. |
[10] | WANG G H, WANG C M, CHU T, et al. Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency[J]. J Biotechnol, 2023, 368:42-52.DOI: 10.1016/j.jbiotec.2023.04.008. |
[11] | GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451.DOI: 10.1016/j.cell.2013.06.044. |
[12] | HUANG S, YAN Y L, SU F, et al. Research progress in gene editing technology[J]. Front Biosci, 2021, 26(10):916-927.DOI: 10.52586/4997. |
[13] | REES H A, LIU D R. Base editing:precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018, 19(12):770-788.DOI: 10.1038/s41576-018-0059-1. |
[14] | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.DOI: 10.1038/nature17946. |
[15] | WANG X, DING C F, YU W X, et al. Cas12a base editors induce efficient and specific editing with low DNA damage response[J]. Cell Rep, 2020, 31(9):107723.DOI: 10.1016/j.celrep.2020.107723. |
[16] | HU J C, SUN Y, LI B S, et al. Strand-preferred base editing of organellar and nuclear genomes using CyDENT[J]. Nat Biotechnol, 2024, 42:936-945.DOI: 10.1038/s41587-023-01910-9. |
[17] | WANG X, LI J N, WANG Y, et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J]. Nat Biotechnol, 2018, 36(10):946-949.DOI: 10.1038/nbt.4198. |
[18] | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305):aaf8729.DOI: 10.1126/science.aaf8729. |
[19] | HESS G T, FRÉSARD L, HAN K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J]. Nat Methods, 2016, 13(12):1036-1042.DOI: 10.1038/nmeth.4038. |
[20] | KOBLAN L W, DOMAN J L, WILSON C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9):843-846.DOI: 10.1038/nbt.4172. |
[21] | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408):1259-1262.DOI: 10.1126/science.aas9129. |
[22] | KOMOR A C, ZHAO K T, PACKER M S, et al. Improved base excision repair inhibition and bacteriophage mu gam protein yields C:G-to-T:a base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8):eaao4774.DOI: 10.1126/sciadv.aao4774. |
[23] | HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63.DOI: 10.1038/nature26155. |
[24] | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471.DOI: 10.1038/nature24644. |
[25] | HUANG T P, ZHAO K T, MILLER S M, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nat Biotechnol, 2019, 37(6):626-631.DOI: 10.1038/s41587-019-0134-y. |
[26] | ZHAO D D, LI J, LI S W, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol, 2021, 39(1):35-40.DOI: 10.1038/s41587-020-0592-2. |
[27] | YE L J, ZHAO D D, LI J, et al. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells[J]. Nat Biotechnol, 2024, 42(10):1538-1547.DOI: 10.1038/s41587-023-02050-w. |
[28] | ZHANG X H, ZHU B Y, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7):856-860.DOI: 10.1038/s41587-020-0527-y. |
[29] | GRÜNEWALD J, ZHOU R H, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7):861-864.DOI: 10.1038/s41587-020-0535-y. |
[30] | LI C, ZHANG R, MENG X B, et al. Targeted,random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7):875-882.DOI: 10.1038/s41587-019-0393-7. |
[31] | SAKATA R C, ISHIGURO S, MORI H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nat Biotechnol, 2020, 38(7):865-869.DOI: 10.1038/s41587-020-0509-0. |
[32] | YUAN T L, WU L L, LI S Y, et al. Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes[J]. Cell Discov, 2024, 10(1):20.DOI: 10.1038/s41421-023-00624-1. |
[33] | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157.DOI: 10.1038/s41586-019-1711-4. |
[34] | LIN Q P, ZONG Y, XUE C X, et al. Prime genome editing in rice and wheat[J]. Nat Biotechnol, 2020, 38(5):582-585.DOI: 10.1038/s41587-020-0455-x. |
[35] | DOMAN J L, PANDEY S, NEUGEBAUER M E, et al. Phage-assisted evolution and protein engineering yield compact,efficient prime editors[J]. Cell, 2023, 186(18):3983-4002.e26.DOI: 10.1016/j.cell.2023.07.039. |
[36] | CHADWICK A C, WANG X, MUSUNURU K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing[J]. Arterioscler Thromb Vasc Biol, 2017, 37(9):1741-1747.DOI: 10.1161/ATVBAHA.117.309881. |
[37] | MUSUNURU K, CHADWICK A C, MIZOGUCHI T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in Primates[J]. Nature, 2021, 593(7859):429-434.DOI: 10.1038/s41586-021-03534-y. |
[38] | CHEMELLO F, CHAI A C, LI H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing[J]. Sci Adv, 2021, 7(18):eabg4910.DOI: 10.1126/sciadv.abg4910. |
[39] | HAN W Y, GAO B Q, ZHU J J, et al. Design and application of the transformer base editor in mammalian cells and mice[J]. Nat Protoc, 2023, 18(11):3194-3228.DOI: 10.1038/s41596-023-00877-w. |
[40] | ZENG Y T, LI J N, LI G L, et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J]. Mol Ther, 2018, 26(11):2631-2637.DOI: 10.1016/j.ymthe.2018.08.007. |
[41] | KUANG Y J, LI S F, REN B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Mol Plant, 2020, 13(4):565-572.DOI: 10.1016/j.molp.2020.01.010. |
[42] | LI Y M, ZHU J J, WU H, et al. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize[J]. Crop J, 2020, 8(3):449-456.DOI: 10.1016/j.cj.2019.10.001. |
[43] | ZONG Y, SONG Q N, LI C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nat Biotechnol, 2018, 36: 950-95.DOI: 10.1038/nbt.4261. |
[44] | ZHANG R, LIU J X, CHAI Z Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5):480-485.DOI: 10.1038/s41477-019-0405-0. |
[45] | KANG B C, WOO J W, KIM S T, et al. Guidelines for C to T base editing in plants:base-editing window,guide RNA length,and efficient promoter[J]. Plant Biotechnol Rep, 2019, 13(5):533-541.DOI: 10.1007/s11816-019-00572-x. |
[46] | HUANG X E, WANG Y C, WANG N. Base editors for Citrus gene editing[J]. Front Genome Ed, 2022, 4:852867.DOI: 10.3389/fgeed.2022.852867. |
[47] | YAO T, YUAN G L, LU H W, et al. CRISPR/Cas9-based gene activation and base editing in Populus[J]. Hortic Res, 2023, 10(6):uhad085.DOI: 10.1093/hr/uhad085. |
[48] | KIM Y, HONG S A, YU J, et al. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease[J]. Cell Stem Cell, 2021, 28(9):1614-1624.e5.DOI: 10.1016/j.stem.2021.04.010. |
[49] | BOSE S K, WHITE B M, KASHYAP M V, et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease[J]. Nat Commun, 2021, 12(1):4291.DOI: 10.1038/s41467-021-24443-8. |
[50] | KOBLAN L W, ERDOS M R, WILSON C, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843):608-614.DOI: 10.1038/s41586-020-03086-7. |
[51] | LIU X S, QIN R Y, LI J, et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant Biotechnol J, 2020, 18(9):1845-1847.DOI: 10.1111/pbi.13348. |
[52] | TIAN Y F, SHEN R D, LI Z R, et al. Efficient C-to-G editing in rice using an optimized base editor[J]. Plant Biotechnol J, 2022, 20(7):1238-1240.DOI: 10.1111/pbi.13841. |
[53] | JANG H, JO D H, CHO C S, et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases[J]. Nat Biomed Eng, 2022, 6(2):181-194.DOI: 10.1038/s41551-021-00788-9. |
[54] | XU W, ZHANG C W, YANG Y X, et al. Versatile nucleotides substitution in plant using an improved prime editing system[J]. Mol Plant, 2020, 13(5):675-678.DOI: 10.1016/j.molp.2020.03.012. |
[55] | QIAO D X, WANG J Y, LU M H, et al. Optimized prime editing efficiently generates heritable mutations in maize[J]. J Integr Plant Biol, 2023, 65(4):900-906.DOI: 10.1111/jipb.13428. |
[56] | HUANG J, LIN Q, QIU J L, et al. Discovery of deaminase functions by structure-based protein clustering[J/OL]. Cell, 2023. DOI:10.1016/j.cell2023.05.041. |
[57] | ZONG Y, LIU Y J, XUE C X, et al. An engineered prime editor with enhanced editing efficiency in plants[J]. Nat Biotechnol, 2022, 40(9):1394-1402.DOI: 10.1038/s41587-022-01254-w. |
[58] | NELSON J W, RANDOLPH P B, SHEN S P, et al. Engineered pegRNAs improve prime editing efficiency[J]. Nat Biotechnol, 2022, 40(3):402-410.DOI: 10.1038/s41587-021-01039-7. |
[59] | SUN C, LEI Y, LI B S, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nat Biotechnol, 2024, 42:316-327.DOI: 10.1038/s41587-023-01769-w. |
[60] | HUA K, TAO X P, YUAN F T, et al. Precise A·T to G·C base editing in the rice genome[J]. Mol Plant, 2018, 11(4):627-630.DOI: 10.1016/j.molp.2018.02.007. |
[61] | 袁雪宁, 姚凤鸽, 安轶, 等. CRISPR/Cas基因组编辑在木本植物性状改良中的应用[J/OL]. 科学通报, 2024, 1-17. |
YUAN X N, YAO F G, AN Y, et al. Application of CRISPR/Cas genome editing in woody plant trait improvement[J/OL]. Chin Sci Bull, 2024,1-17. DOI: 10.1360/TB-2023-1125. (in Chinese) | |
[62] | LI G, SRETENOVIC S, EISENSTEIN E, et al. Highly efficient C-to-T and A-to-G base editing in a Populus hybrid[J]. Plant Biotechnol J, 2021, 19(6):1086-1088.DOI: 10.1111/pbi.13581. |
[1] | WANG Wei, QIU Zhinan, LI Shuang, BAI Xiangdong, LIU Guifeng, JIANG Jing. CRISPR/Cas9 ribonucleoprotein-mediated precise mutation of BpGLK1 in birch without T-DNA insertion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 11-17. |
[2] | WANG Zhuwen, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 31-39. |
[3] | HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming. Application of CRISPR/Cas technique in woody plant improvement [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 24-30. |
[4] | SUN Jiatong, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 15-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||