JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1): 217-224.doi: 10.12302/j.issn.1000-2006.202301012
Previous Articles Next Articles
DAI Di1,2(), PENG Jie2,*(
), LIU Zhiming2, WEI Renjie2, LI Liangliang2
Received:
2023-01-09
Revised:
2023-03-20
Online:
2025-01-30
Published:
2025-01-21
Contact:
PENG Jie
E-mail:daidiruiko@hhu.edu.cn;peng-jie@hhu.edu.cn
CLC Number:
DAI Di, PENG Jie, LIU Zhiming, WEI Renjie, LI Liangliang. Experimental study on uniformity of microbial cemented sand by bio-grouting[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 217-224.
Table 1
Bacterial injection test scheme"
编号 symbol | 注菌方式 injection method | 注浆速率 grouting rate |
---|---|---|
A | 直接从砂柱顶部注入1 Ve菌液 | 4 mL/min |
B | 先注入1 Ve的0.05 mol/L氯化钙固定液, 静置6 h后再注入1Ve菌液 | 4 mL/min |
C | 先注入1 Ve菌液,静置6 h后再 注入1 Ve的0.05 mol/L氯化钙固定液 | 4 mL/min |
D | 将0.5Ve菌液和0.5 Ve的0.05 mol/L 氯化钙固定液混合后共同注入 | 4 mL/min |
E | 将0.5Ve菌液和0.5 Ve的0.01 mol/L 氯化钙固定液混合后共同注入 | 4 mL/min |
F | 交替注入菌液和固定液,交替注入菌液或 固定液的体积为0.25 Ve,共计1 Ve | 4 mL/min |
Table 2
Test results of injection of sand column bacteria"
编号 symbol | 菌液 体积/mL volume of bacterial solution | 变异系数 CV | OD600 留存率/% retention rate of OD600 | 活性 留存率/% retention rate of activity |
---|---|---|---|---|
A | 730 | 0.14±0.01 f | 15.04±0.27 g | 17.79±0.24 f |
B | 730 | 0.19±0.01 e | 36.22±0.67 c | 41.77±1.05 c |
C | 730 | 0.15±0.01 f | 25.14±0.60 d | 30.04±0.49 d |
D | 365 | 2.18±0.04 a | 100.00±0.00 a | 100.00±0.00 a |
E | 365 | 1.52±0.02 b | 98.33±0.47 a | 100.00±0.00 a |
F | 365 | 0.13±0.01 g | 76.12±1.47 b | 84.87±1.60 b |
C1 | 730 | 0.52±0.02 d | 21.88±0.45 e | 28.11±0.73 d |
C3 | 730 | 0.67±0.01 c | 17.68±0.49 f | 21.97±0.20 e |
Table 3
Sand column reinforcement test results"
编号 symbol | 碳酸钙质量/g calcium carbonate mass | 无侧限强度/kPa UCS | ||||
---|---|---|---|---|---|---|
均值 mean | 标准差 SD | 变异系数 CV | 均值 mean | 标准差 SD | 变异系数 CV | |
A | 8.60±0.02 b | 2.52±0.03 c | 0.29±0.01 c | 1 200.7±27.47 a | 713.6±33.85 b | 0.59±0.03 c |
B | 9.59±0.01 a | 3.77±0.01 a | 0.39±0.01 b | 1 204.9±42.99 a | 857.8±12.58 b | 0.71±0.03 b |
C | 8.09±0.04 c | 2.34±0.08 d | 0.29±0.00 c | 1 091.3±27.41 b | 609.3±23.67 c | 0.56±0.03 c |
F | 7.91±0.04 d | 3.45±0.09 b | 0.44±0.01 a | 1 126.7±14.00 b | 1 058.4±11.89 a | 0.94±0.03 a |
[1] | 王海波, 赵志峰, 张甜. 季节性冻融对滞洪区改良路基性能的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(3):156-162. |
WANG H B, ZHAO Z F, ZHANG T. Performance of improved soil subgrade under freeze-thaw cycles in flood retarding basin[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(3):156-162.DOI: 10.3969/j.issn.1000-2006.2016.03.026. | |
[2] | 邵光辉, 尤婷, 赵志峰, 等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报(自然科学版), 2017, 41(2):129-135. |
SHAO G H, YOU T, ZHAO Z F, et al. Microstructure and mechanism of microbial cementation silt treated by bio-grouting[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(2):129-135.DOI: 10.3969/j.issn.1000-2006.2017.02.019. | |
[3] | 邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11):133-139. |
SHAO G H, FENG J T, ZHAO Z F, et al. Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J]. Trans Chin Soc Agric Eng, 2017, 33(11):133-139.DOI: 10.11975/j.issn.1002-6819.2017.11.017. | |
[4] | 唐朝生, 泮晓华, 吕超, 等. 微生物地质工程技术及其应用[J]. 高校地质学报, 2021, 27(6):625-654. |
TANG C S, PAN X H, LYU C, et al. Bio-geoengineering technology and the applications[J]. Geol J China Univ, 2021, 27(6):625-654.DOI: 10.16108/j.issn1006-7493.2021011. | |
[5] | JIANG N J, SOGA K. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures[J]. Géotechnique, 2017, 67(1):42-55.DOI: 10.1680/jgeot.15.p.182. |
[6] | 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1):1-14. |
LIU H L, XIAO P, XIAO Y, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. J Civ Environ Eng, 2019, 41(1):1-14.DOI: 10.11835/j.issn.2096-6717.2019.001. | |
[7] | JIANG N J, TANG C S, YIN L Y, et al. Applicability of microbial calcification method for sandy-slope surface erosion control[J]. J Mater Civ Eng, 2019, 31(11):04019250.DOI: 10.1061/(asce)mt.1943-5533.0002897. |
[8] | SALIFU E, MACLACHLAN E, IYER K R, et al. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes:a preliminary investigation[J]. Eng Geol, 2016, 201:96-105.DOI: 10.1016/j.enggeo.2015.12.027. |
[9] | MEYER F D, BANG S, MIN S, et al. Microbiologically:induced soil stabilization, application of sporosarcina pasteurii for fugitive dust control[J]. Geo-Frontiers, 2011, 4002-4011. DOI: 10.1061/41165(397)409. |
[10] | 韩智光. 微生物加固砂土的抗液化性能多尺度试验研究[D]. 北京: 清华大学, 2017. |
HAN Z G. Multi scale experimental research on anti-liquefaction performance of liquefiable sands strengthened by microorganisms[D]. Beijing: Tsinghua University, 2017. | |
[11] | 王绪民, 郭伟, 余飞, 等. 多浓度营养盐处理对微生物胶结砂土均匀性与强度的影响[J]. 土木建筑与环境工程, 2017, 39(3):145-150. |
WANG X M, GUO W, YU F, et al. Effects of multi-nutrient treatment on the uniformity and strength of MICP-cemented sand[J]. J Civ Archit Environ Eng, 2017, 39(3):145-150. DOI:10.11835/j.issn.1674-4764.2017.03.019. | |
[12] | 侯敏. 微生物粉土一维注浆尺寸效应研究[D]. 南京: 南京林业大学, 2018. |
HOU M. Study on the size effect of one-dimensional grouting of microbial silt[D]. Nanjing: Nanjing Forestry University, 2018. | |
[13] | XIAO Y, ZHAO C, SUN Y, et al. Compression behavior of MICP-treated sand with various gradations[J]. Acta Geotech, 2021, 16(5):1391-1400.DOI: 10.1007/s11440-020-01116-2. |
[14] | WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiol J, 2007, 24(5):417-423.DOI: 10.1080/01490450701436505. |
[15] | HOMMEL J, LAUCHNOR E, GERLACH R, et al. Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media[J]. Transp Porous Medium, 2016, 114(2):557-579.DOI: 10.1007/s11242-015-0617-3. |
[16] | HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecol Eng, 2010, 36(2):112-117.DOI: 10.1016/j.ecoleng.2009.01.004. |
[17] | 邵光辉, 黄容聘. 电场改善微生物水泥胶结砂均匀性[J]. 硅酸盐学报, 2018, 46(11):1575-1583. |
SHAO G H, HUANG R P. Electrokinetic effect on homogeneity improvement of cemented sand by biogrouting[J]. J Chin Ceram Soc, 2018, 46(11):1575-1583.DOI: 10.14062/j.issn.0454-5648.2018.11.12. | |
[18] | MORTENSEN B M, HABER M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. J Appl Microbiol, 2011, 111(2):338-349.DOI: 10.1111/j.1365-2672.2011.05065.x. |
[19] | CHENG L, CORD-RUWISCH R. In situ soil cementation with ureolytic bacteria by surface percolation[J]. Ecol Eng, 2012, 42:64-72.DOI: 10.1016/j.ecoleng.2012.01.013. |
[20] | DHAMI N K, REDDY M S, MUKHERJEE A. Significant indicators for biomineralisation in sand of varying grain sizes[J]. Constr Build Mater, 2016, 104:198-207.DOI: 10.1016/j.conbuildmat.2015.12.023. |
[21] | CUNNINGHAM A B, SHARP R R, CACCAVO F, et al. Effects of starvation on bacterial transport through porous media[J]. Adv Water Resour, 2007, 30(6/7):1583-1592.DOI: 10.1016/j.advwatres.2006.05.018. |
[22] | MARTINEZ B C, DEJONG J T, GINN T R, et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. J Geotech Geoenviron Eng, 2013, 139(4):587-598.DOI: 10.1061/(asce)gt.1943-5606.0000787. |
[23] | 崔明娟, 郑俊杰, 赖汉江. 菌液注射方式对微生物固化砂土动力特性影响试验研究[J]. 岩土力学, 2017, 38(11):3173-3178. |
CUI M J, ZHENG J J, LAI H J. Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock Soil Mech, 2017, 38(11):3173-3178.DOI: 10.16285/j.rsm.2017.11.012. | |
[24] | 谭慧明, 陈福茂, 何稼, 等. 土颗粒尺寸对微生物诱导碳酸钙沉积反应速率的影响[J]. 哈尔滨工程大学学报, 2019, 40(11):1884-1889. |
TAN H M, CHEN F M, HE J, et al. Effect of soil particle size on the reaction rate of microbial-induced calcium precipitation[J]. J Harbin Eng Univ, 2019, 40(11):1884-1889.DOI: 10.11990/jheu.201807072. | |
[25] | 王子玉, 喻文晔, 齐超楠, 等. 海水环境下MICP的反应机理与影响因素[J]. 土木与环境工程学报(中英文), 2022, 44(5):128-135. |
WANG Z Y, YU W Y, QI C N, et al. Reaction mechanism and influencing factors of MICP in seawater environment[J]. J Civ Environ Eng, 2022, 44(5):128-135.DOI: 10.11835/j.issn.2096-6717.2021.169. | |
[26] | 彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6):1048-1055. |
PENG J, FENG Q P, SUN Y C. Influences of temperatures on MICP-treated soils[J]. Chin J Geotech Eng, 2018, 40(6):1048-1055.DOI: 10.11779/CJGE201806010. | |
[27] | CHENG L, SHAHIN M A. Urease active bioslurry:a novel soil improvement approach based on microbially induced carbonate precipitation[J]. Can Geotech J, 2016, 53(9):1376-1385.DOI: 10.1139/cgj-2015-0635. |
[28] | XIAO Y, WANG Y, WANG S, et al. Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method[J]. Acta Geotech, 2021, 16(5):1417-1427.DOI: 10.1007/s11440-020-01122-4. |
[29] | CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotech, 2019, 14(3):615-626.DOI: 10.1007/s11440-018-0738-2. |
[1] | LI Jiping,XU Yongfeng,CHEN Zipeng,HAN Jiangang,LI Wei﹡,LI Pingping﹡. Characteristics of nitrogen and phosphorus runoff of wheat-rice double cropping field and poplar forest land in intersection area of Hung-tse Lake [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 98-104. |
[2] | SHAO Guanghui, YOU Ting, ZHAO Zhifeng, LIU Peng,FENG Jianting. Microstructure and mechanism of microbial cementation silt treated by bio-grouting [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 129-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||