JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3): 190-196.doi: 10.12302/j.issn.1000-2006.202308011
Previous Articles Next Articles
JIANG Mingyue(), HUANG Qingyang*(
), YANG Fan, XIE Lihong, CAO Hongjie, SHA Gang
Received:
2023-08-11
Accepted:
2024-07-28
Online:
2025-05-30
Published:
2025-05-27
Contact:
HUANG Qingyang
E-mail:736035905@qq.com;huangqingyang@163.com
CLC Number:
JIANG Mingyue, HUANG Qingyang, YANG Fan, XIE Lihong, CAO Hongjie, SHA Gang. Response of soil humification degree in Wudalianchi kipuka to the decomposition of foliar litter in the home-field advantage[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(3): 190-196.
Fig. 1
The optical density values of three foliar litter decomposition in home field and away field Different lowercase letters represent the significant difference in the tone coefficient value of soil humus under different treatments of foliar litter under home field at the same period, different uppercase letters represent the significant difference in the tone coefficient value of soil humus under different treatments of foliar litter under away field at the same period(P<0.05).The same below."
Table 1
Repeated measure ANOVA results for the effects of decomposition time, foliar litter, forest type and their interactions on the value of optical density value, tone coefficient and relative chroma"
因子factor | df | FE4/E6 | FRF | |
---|---|---|---|---|
分解时间decomposition time | 5 | 150.23** | 142.87** | 1 268.15** |
森林类型forest type | 1 | 1 121.70** | 1 382.96** | 513.12** |
凋落叶foliar litter | 2 | 20.49** | 15.32** | 7.32 |
森林类型×凋落叶forest type × foliar litter | 2 | 3.69 | 3.16 | 536.49** |
分解时间×森林类型decomposition time × forest type | 5 | 35.63** | 18.62** | 287.46** |
分解时间×凋落叶decomposition time × foliar litter | 10 | 1.37** | 6.22** | 48.71** |
分解时间×森林类型×凋落叶decomposition time × forest type×foliar litter | 10 | 7.45** | 7.67** | 169.54** |
Table 2
The correlation of three optical indices of soil humus under three foliar litter between home field and away field"
凋落叶来源 foliar litter | 指标 index | 客场away field | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
山杨凋落叶 foliar litter of P. davidiana | 白桦凋落叶 foliar litter of B. platyphylla | 落叶松凋落叶 foliar litter of L. gmelinii | |||||||||
光密度 E4/E6 | 色调系数 ΔlogK | 相对色度 RF | 光密度 E4/E6 | 色调系数 ΔlogK | 相对色度 RF | 光密度 E4/E6 | 色调系数 ΔlogK | 相对色度 RF | |||
主场 home field | 山杨 P. davidiana | 光密度E4/E6 | 0.370 | 0.416 | 0.745** | -0.003 | -0.010 | 0.186 | 0.689** | 0.769** | 0.665** |
色调系数ΔlogK | 0.423 | 0.532* | 0.752** | 0.095 | 0.270 | 0.241 | 0.560* | 0.780** | 0.565* | ||
相对色度RF | 0.662** | 0.564* | 0.633** | 0.408 | 0.186 | 0.444 | 0.825** | 0.743** | 0.914** | ||
白桦 B. platyphylla | 光密度E4/E6 | 0.835** | 0.779** | 0.691** | 0.559* | 0.443 | 0.621** | 0.837** | 0.876** | 0.945** | |
色调系数ΔlogK | 0.827** | 0.815** | 0.709** | 0.559* | 0.542* | 0.615** | 0.745** | 0.896** | 0.873** | ||
相对色度RF | 0.513* | 0.413 | 0.786** | 0.303 | 0.249 | 0.244 | 0.727** | 0.722** | 0.791** | ||
落叶松 L. gmelinii | 光密度E4/E6 | 0.519* | 0.529* | 0.806** | 0.178 | 0.209 | 0.312 | 0.699** | 0.823** | 0.696** | |
色调系数ΔlogK | 0.515* | 0.596** | 0.739** | 0.178 | 0.293 | 0.320 | 0.609** | 0.851** | 0.606** | ||
相对色度RF | 0.007 | -0.037 | 0.321 | -0.307 | -0.534* | -0.130 | 0.539* | 0.362 | 0.396 |
[1] | COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The microbial efficiency-matrix stabilization (mems) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995. DOI: 10.1111/gcb.12113. |
[2] | ONO K, HIRADATE S, MORITA S, et al. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan[J]. Plant & Soil, 2011, 338(1): 171-181. DOI: 10.1007/s11104-010-0397-z. |
[3] | NEUMANN M, UKONMAANAHO L, JOHNSON J, et al. Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling[J]. Global Biogeochemical Cycles, 2018, 32(5): 784-798. DOI: 10.1029/2017GB005825. |
[4] | KUZYAKOV Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology & Biochemistry, 2010, 42(9): 1363-1371. DOI: 10.1016/j.soilbio.2010.04.003. |
[5] | CASTELLANO M J, MUELLER K E, OLK D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3200-3209. DOI: 10.1111/gcb.12982. |
[6] | FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology & Biochemistry, 2003, 35(6): 837-843. DOI: 10.1016/s0038-0717(03)00123-8. |
[7] | TIAN Q S T. Form of nitrogen deposition affects soil organic matter priming by glucose and cellulose[J]. Biology and Fertility of Soils, 2019, 55(4): 383-391. DOI: 10.1007/s00374-019-01357-8. |
[8] | 李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16): 4977-4987. |
LI Y N, ZHOU X M, ZHANG N L, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2016, 36(16): 4977-4987. DOI: 10.5846/stxb201501200165. | |
[9] | SAYER E J, HEARD M S, GRANT H K, et al. Soil carbon release enhanced by increased tropical forest litter fall[J]. Nature Climate Change, 2011, 1: 304-307. DOI: 10.1038/nclimate1190. |
[10] | MUELLER-DOMBOIS D, BOEHMER H J. Origin of the Hawaiian rainforest and its transition states in long-term primary succession[J]. Biogeosciences, 2013, 10(7): 5171-5182.DOI: 10.5194/bg-10-5171-2013. |
[11] | 査同刚, 张志强, 孙阁, 等. 凋落物分解主场效应及其土壤生物驱动[J]. 生态学报, 2012, 32(24): 7991-8000. |
ZHA T G, ZHANG Z Q, SUN G, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: a review[J]. Acta Ecologica Sinica, 2012, 32(24): 7991-8000. DOI: 10.5846/stxb201204020461. | |
[12] | 王亚菲, 张青青, 江康威, 等. 凋落物及土壤浸提液对西伯利亚落叶松种子萌发的影响[J]. 森林工程, 2024, 40 (2): 1-9. |
WANG Y F, ZHANG Q Q, JIANG K W, et al. Effect of litter and soil extracts on seed germination of Larix sidirica[J]. Forest Engineering, 2024, 40(2):1-9. | |
[13] | EDWARD A, HEIDI S, SIMMONS B L, et al. Home-field advantage accelerates leaf litter decomposition in forests[J]. Soil Biology & Biochemistry, 2009, 41(3): 606-610. DOI: 10.1016/j.soilbio.2008.12.022. |
[14] | NI X Y, YANG W Q, TAN B, et al. Accelerated foliar litter humification in forest gaps: dual feedbacks of carbon sequestration during winter and the growing season in an alpine forest[J]. Geoderma: Global Journal of Soil Science, 2015, 241-242: 136-144. DOI: 10.1016/j.geoderma.2014.11.018. |
[15] | WATANABE A, SARNO, RUMBANRAJA J, et al. Humus composition of soils under forest, coffee and arable cultivation in hilly areas of south Sumatra, Indonesia[J]. Opean Journal of Soil Science, 2001, 52(4): 599-606. DOI: 10.1046/j.1365-2389.2001.00410.x. |
[16] | IKEYA K, WATANABE A. Direct expression of an index for the degree of humification of humic acids using organic carbon concentration[J]. Soil Science and Plant Nutrition, 2003, 49(1): 47-53. DOI: 10.1080/00380768.2003.10409978. |
[17] | NI X Y, YANG W Q, TAN B, et al. Forest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest[J]. Scientific Reports, 2016, 6: 19744. DOI: 10.1038/srep19744. |
[18] | 卫芯宇, 倪祥银, 谌亚, 等. 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响[J]. 生态学报, 2021, 41(20): 8266-8275. |
WEI X Y, NI X Y, CHEN Y, et al. Effects of litter fall on soil humification in three subalpine forests[J]. Acta Ecologica Sinica, 2021, 41(20): 8266-8275. DOI: 10.5846/stxb202011012794. | |
[19] | 王军, 满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤氮素的短期影响[J]. 森林工程, 2023, 39 (4): 1-9. |
WANG J, MAN X L. Short term effects of litter and sod layer removal on soil nitrogen in typical forests in cold temperate zone[J]. Forest Engineering, 2023, 39(4):1-9. | |
[20] | CHOMEL M, GUITTONNY-LARCHEVÊQUE M, DESROCHERS A, et al. Home field advantage of litter decomposition in pure and mixed plantations under boreal climate[J]. Ecosystems, 2015, 18(6): 1014-1028. DOI: 10.1007/s10021-015-9880-y. |
[21] | LI Y B, LI Q, YANG J J, et al. Home-field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective[J]. Functional Ecology, 2017, 31(9): 1792-1801. DOI: 10.1111/1365-2435.12863. |
[22] | JOHN M G S, ORWIN K H, DICKIE I A. No ‘home’ versus ‘away’ effects of decomposition found in a grassland-forest reciprocal litter transplant study[J]. Soil Biology & Biochemistry, 2011, 43(7): 1482-1489. DOI: 10.1016/j.soilbio.2011.03.022. |
[23] | PONGE J F. Plant-soil feedbacks mediated by humus forms: a review[J]. Soil Biology Biochemistry, 2013, 57(1): 1048-1060. DOI: 10.1016/j.soilbio.2012.07.019. |
[24] | 窦森, TARDY Y, 张晋京, 等. 土壤胡敏酸与富里酸热力学稳定性及其驱动因素初步研究[J]. 土壤学报, 2010, 47(1): 71-76. |
DOU S, TARDY Y, ZHANG J J, et al. Thermodynamic stability of humic acid and fulvic acid in soil and its driving factors[J]. Acta Pedologica Sinica, 2010, 47(1): 71-76. DOI: 10.11766/trxb200804300111. | |
[25] | WANG Q K, ZHONG M C, HE T X. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems[J]. Biology Fertility of Soils, 2013, 49(4): 427-434. DOI: 10.1007/s00374-012-0741-y. |
[26] | 李嘉欣, 韩有志, 刘奋武, 等. 秸秆、枝条堆肥及堆肥产品中重金属在蚯蚓体内的富集行为[J]. 生物加工过程, 2024, 22(3):309-317. |
LI J X, HAN Y Z, LIU F W, et al. Accumulation of heavy metals in earthworms from compost products of straw,branch composting[J]. Chinese Journal of Bio process Engineering, 2024, 22(3):309-317. DOI:10.3969/j.issn.1672-3678.2024.03.009. | |
[27] | 徐国良, 莫江明, 周国逸, 等. 氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J]. 生态环境, 2005, 14(6): 901-907. |
XU G L, MO J M, ZHOU G Y, et al. Litter decomposition under N deposition in Dinghushan forests and its relationship with soil fauna[J]. Ecology and Environmental Sciences, 2005, 14(6): 901-907. DOI: 10.16258/j.cnki.1674-5906.2005.06.022. |
[1] | KONG Delun, XING Yanqiu. Inversion of tree height from GEDI and ICESat-2 spaceborne lidar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 175-184. |
[2] | HUANG Jian, WU Dasheng, FANG Luming. Identification of sub-compartment forest type based on multi-source data and three-tier models [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 69-80. |
[3] | ZHU Jiaqi, MAN Xiuling, WANG Fei. Organic carbon and nitrogen characteristics of soil aggregates in four forest types in frigid temperate zone [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 71-83. |
[4] | CAI Longtao, XING Tao, XING Yanqiu, DING Jianhua, HUANG Jiapeng, CUI Yang, QIN Lei. Identification of forest types based on ICESat-GLAS data and fuzzy pattern recognition algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 33-40. |
[5] | WANG Bing, ZHANG Pengjie, ZHANG Qiuliang. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 15-24. |
[6] | WU Guoxun, TANG Xuejun, RUAN Honghua, LUO Xifang. Carbon storage and carbon sequestration potential based on forest inventory data in Jiangxi Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 105-110. |
[7] | CHEN Lixin, LIANG Weiwei, DUAN Wenbiao, LI Gang, LI Yifei, LI Shaoran, MA Haijuan. Effects of low molecular weight organic acid on inorganic phosphorus fractions of typical temperate forest soils [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 75-82. |
[8] | ZHU Guangyu, HU Song, FU Liyong. Basal area growth model for oak natural forest in Hunan Province based on dummy variable [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(02): 155-162. |
[9] | WANG Xing, CUI Xiaoyang, GUO Yafen. A study on free amino acid in different forest types soil of cold-temperate forest region [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(04): 42-48. |
[10] | WU Chuping, YE Jihua, HUANG Yujie, ZHU Jinru, SHEN Aihua, YUAN Weigao, JIANG Bo. Effects of different forest types on water quality in Zhoushan Island, Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(04): 75-80. |
[11] | WEI Qiang,ZHANG Guangzhong,LING Lei,CHAI Chunshan. Water conservation function of litter and soil layer under main forest types in Xinglong Mountain of Gansu [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(02): 78-84. |
[12] | GU Yushu, XING Zhaokai, HAN Youzhi, LIU Hongmin, GAO Yingxu. Water-holding characteristics of four typical forests litter in upstream of Hunhe river [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(01): 31-36. |
[13] | TAO Baoxian,ZHANG Jinchi. Preliminary study of the variation of air anion in different forest stands in Nanjing city [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(02): 147-150. |
[14] | YI Lita, YAN Xiaosu, YU Shuquan, BAO Chunquan, TU Yonghai, PAN Changyao. The health index system of different forest types in Zhejiang province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(01): 145-148. |
[15] | JIANG Wen wei 1,2 ,JIANG Zhi lin 1,YU Shu quan 2,LIU An xin 3,QIAN Xin biao 2. Analysis and Evaluation on Water-holding Function of Main Forest Types in Anji Region [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2002, 26(04): 71-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||