The static simulation test for synthetic wastewater purification was carried out by using Chlorella pyrenoidosa entrapped in calcium alginate, and influence of copper at different pH on the nitrogenremoval efficiencies of immobilized Chlorella pyrenoidosa for ammonia and nitric acidcontaining wastewater were also investigated. Test results showed that comparing without copper in wastewater, when copper was added,the NH+3N removal of immobilized Chlorella pyrenoidosa in 5 days at pH=4, 5, 6, 7, 8 was reduced 4.0%, 0.6%, 5.9%, 6.0% and 4.4% respectively, the NH+3N removal of suspended Chlorella pyrenoidosa was reduced 10.9%, 22.4%, 15.5%, 14.5%, 20.2% respectively; The NO-3N removal of immobilized Chlorella pyrenoidosa at pH=6, 7, 8 was reduced 4.1%, 2.8% and 4.2% respectively, but the NO-3N removal at pH=4, 5 was increased 0.8%, 0.2%, the NO-3N removal of suspended Chlorella pyrenoidosa was reduced 4.4%, 9.2%, 5.3%, 10.6%, 10.2% respectively. So copper has inhibited the nitrite uptake efficiency of Chlorella pyrenoidosa in free cells than the immobilized ones, and the treatment of immobilization to algae smoothed the disruption of copper.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]Yakup Nurdogan, William J Oswald. Enhanced nutrient removal in highrate ponds[J]. Water Sci Tech, 1995, 12(31): 33-43.
[2]Chevalier P, de la Noüe J. Wastewater nutrient removal with microalgae immobilized in carrageenan[J]. Enzyme Microb Technol, 1985, 7: 621-624.
[3]Mehta S K,Gaur J P. Use of algae for removing heavy metal ions from waste water: Progress and prospects[J]. Critical Reviews in Biotechnology, 2005, 25(3): 113-152.
[4]Sashenka Fierro, Maria del Pilar SánchezSaavedra, Carmen Copalcúa. Nitrate and phosphate removal by chitosan immobilized Scenedesmus[J]. Bioresource Technology, 2008, 99: 1274-1279.
[5]Jing Shi, Bjrn Podola,Michael Melkonian.Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study[J]. J Appl Phycol, 2007, 19: 417-423.
[6]吕福荣,杨海波,李英敏. 小球藻净化污水中氮磷能力的研究[J]. 生物学杂志,2003,20(2):21-23.
[7]李贺,王起华,周春影,等. 固定化小球藻对市政污水中N、P营养盐的深度处理Ⅱ.细胞负载和饥饿处理对氮磷去除率的影响[J]. 辽宁师范大学学报:自然科学版,2003,26(2):183-186.
[8]曹亚莉,田沈,赵军,等. 固定化微生物细胞技术在废水处理中的应用[J]. 微生物学通报,2003,30(3):77-81.
[9]邢丽贞,李飞,张向阳,等. 固定化微藻在解决环境问题方面的应用[J]. 水资源保护,2006,22(5):9-12.
[10]Kaplan D, Stadler T. Algal Biotechnology[M]. London: Elsevier Applied Science, 1988.
[11]张伟,阎海,吴之丽. 铜抑制单细胞绿藻生长的毒性效应[J]. 中国环境科学,2001,21(1):4-7.
[12]严国安,李益健,王志坚,等. 固定化栅藻对污水的净化及其生理特征的变化[J]. 中国环境科学,1995,15(1):10-13.
[13]李定坚,严国安,徐明芳,等. 镉对固定化小球藻除磷效果的影响[J]. 生态科学,2003,22(1):67-69.
[14]周春影. 固定化小球藻对市政污水中N、P营养盐的深度净化[M]. 沈阳:辽宁师范大学出版社,2001.
[15]王翠红,辛晓芸,徐建红,等. 固定化藻细胞去除氨氮的研究[J]. 河南科学,1999,17(6):103-107.
[16]国家环保总局. 水和废水监测分析方法[M]. 北京:中国环境科学出版社,1989.