JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2013, Vol. 37 ›› Issue (06): 147-152.doi: 10.3969/j.issn.1000-2006.2013.06.029
Previous Articles Next Articles
ZHEN Yan, CHEN Jinhui, SHI Jisen*
Online:
2013-12-18
Published:
2013-12-18
CLC Number:
ZHEN Yan, CHEN Jinhui, SHI Jisen. Research progress on the reacquisition of embryogenic potentiality in plant somatic embryogenesis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(06): 147-152.
[1] Hermann v Guttenberg. Kulturversuche mit isolierten Pflanzenzellen[J]. Planta, 1943, 33(4):576-588. [2] Vogel G. How does a single somatic cell become a whole plant [J]. Science, 2005, 309(5731):86. [3] Jimenez V M. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones [J]. Revista Brasileira de Fisiologia Vegetal, 2001, 13(2):196-223. [4] Wang X, Nolan K E, Irwanto R R,et al. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells [J]. Annals of Botany, 2011, 107(4):599-609. [5] Cooke T J, Racusen R H,Cohen J D. The role of auxin in plant embryogenesis [J]. The Plant Cell, 1993, 5(11): 1494-1495. [6] 张金凤,方升佐,尚旭兰,等.青钱柳幼胚愈伤组织的诱导[J].南京林业大学学报:自然科学版,2012,36(5):47-50. Zhang J F, Fang S Z, Shang X L,et al. Callus induction from young embryos of Cyclocarya paliurus[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2012,36(5):47-50. [7] Sagare A P, Lee Y L, Lin T C, et al. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo(Fumariaceae)-a medicinal plant. [J]. Plant Science, 2000, 160(1): 139-147. [8] Kuo C L, Sagare A P, Lo S F, et al. Abscisic acid promotes development of somatic embryos on converted somatic embryos of Corydalis yanhusuo(Fumariaceae)[J]. Journal of Plant Physiology, 2002, 159(4): 423-427. [9] Jimenez V M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis [J]. Plant Growth Regulation, 2005, 47(2-3): 91-110. [10] Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants [J]. Critical Reviews in Plant Science, 2010, 29(1): 36-57. [11] Matsubayashi Y. Recent progress in research on small post-translationally modified peptide signals in plants [J]. Genes to Cells, 2012, 17: 1-10. [12] Zhang J, Mab H, Chen S, et al. Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon—a proteomic approach [J]. Plant Science, 2009, 177(2): 103-113. [13] Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis [J]. Molecular Biology Reports, 2010, 37(5): 2493-2507. [14] Halperin W. Alternative morphogenetic events in cell suspensions [J]. American Journal of Botany, 1966, 53(5): 443-453. [15] Jones T J, Rost T L. The developmental anatomy and ultrastructure of somatic embryos from rice(Oryza sativa L.)scutellum epithelial cells[J]. Botanical Gazette, 1989, 150(1): 41-49. [16] Garrido D, Vicente O, Heberle-Bors E, et al. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum [J]. Protoplasma, 1995, 186(3-4): 220-230. [17] Pedroso M C, Pais M S. Factors controlling somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 1995, 43(2): 147-154. [18] De Jong A J, Schmidt E D,de Vries S C. Early events in higher-plant embryogenesis [J]. Plant Molecular Biology, 1993, 22(2): 367-377. [19] Smith D L, Krikorian A D. pH control of carrot somatic embryogenesi[C]//Nijkamp H J J, van der Plas L H W, Van Aartrijk J. Progress in Plant Cellular and Molecular Biology. Netherlands: Kluwer Academic Publishers, 1990. [20] Komamine A, Matsumoto M, Tsukahara M, et al., Mechanisms of somatic embryogenesis in cell cultures-physiology, biochemistry and molecular biology[C]// Nijkamp H J J, Van Derplo L H N, Van Aortrijk J. Progress in Plant Cellular and Molecular Biology.Netherlands: Kluwer Acad emic Publisher, 1990. [21] Pasternak T P, Prinsen E, Ayaydin F, et al. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa [J]. Plant Physiology, 2002, 129(4): 1807-1819. [22] Fransz P F, Schel J H N. An ultrastructure study on the early development of Zea mays somatic embryos [J]. Canadian Journal of Botany, 1991, 69(4): 858-865. [23] Namasivayam P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue [J]. Plant Cell Reports, 2006, 25(9): 887-895. [24] De Jong A J, Hendriks T, Meijer E A, et al. Transient reduction in secreted 32 KD chitinase prevents somatic embryogenesis in the carrot(Daucus carota L)variant ts11 [J]. Developmental Genetics, 1995, 16(4): 332-343. [25] van Hengel A J, Tadesse Z, Immerzeel P, et al. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis [J]. Plant Physiology, 2001, 125(4): 1880-1890. [26] Karami O, Aghavaisi B, Mahmoudi Pour A. Molecular aspects of somatic-to-embryogenic transition in plants [J]. Journal Chemical Biology, 2009, 2(4): 177-190. [27] 石雅丽, 张锐, 林芹,等. 植物体细胞胚胎发生受体类蛋白激酶的生物学功能 [J]. 遗传, 2012, 34(5): 669-673. Shi Y L, Zhang R, Lin Q, et al. Biological function of the somatic embryogenesis receptor-like kinases in plant[J]. Hereditas, 2012, 34(5): 669-673. [28] 魏丕伟. 杂交鹅掌楸体细胞胚胎发生标志基因克隆及表达分析[D]. 南京:南京林业大学,2009. Wei P W. Isolation and expression analysis of the marker genes related to somatic embryogenesis of Liriodendron hybrids[D]. Nanjing:Nanjing Forestry University,2009. [29] 高燕, 席梦利, 王桂凤,等. 马尾松体细胞胚胎发生相关基因PmSERK1 的克隆与表达分析 [J]. 分子植物育种, 2010, 8(1): 53-58. Gao Y,Xi M L,Wang G F,et al. Molecular characterization and expression analysis of PmSERKl during somatic embryogenesis in masson pine[J].Molecular Plant Breeding, 2010, 8(1): 53-58. [30] Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis [J]. Plant Cell Tissue Organ Culture, 2007, 90(1): 1-8. [31] Zhang B H, Pan X P, Cobb G P, et al. Plant microRNA: A small regulatory molecule with big impact [J]. Developmental Biology, 2006, 289(1): 3-16. [32] Luo Y C, Zhou H, Li Y, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development [J]. Febs Letters, 2006, 580(21): 5111-5116. [33] Zhang S, Zhou J, Han S, et al. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis[J]. Biochemical and Biophysical Research Communications, 2010, 398(3): 355-360. [34] Li T, Chen J, Qiu S, et al. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar [J]. Plos One, 2012, 7(8):e43451. [35] Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis [J]. Planta, 236(2): 647-657. [36] Chen C J, Liu Q, Zhang Y C, et al. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus [J]. Rna Biology, 8(3): 538-547. [37] Lyngved R, Renaut J, Hausman J F, et al. Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE [J]. Journal of Plant Growth Regulation, 2008, 27(4): 353-369. [38] Nogueira F C S, Goncalves E F, Jereissati E S, et al. Proteome analysis of embryogenic cell suspensions of cowpea(Vigna unguiculata)[J]. Plant Cell Reports, 2007, 26(8): 1333-1343. [39] Marsoni M, Bracale M, Espen L, et al. Proteomic analysis of somatic embryogenesis in Vitis vinifera [J]. Plant Cell Reports, 2008, 27(2): 347-356. [40] Yin L, Tao Y, Zhao K, et al. Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation [J]. Proteomics, 2007, 7(5): 755-768. [41] Kreuger M, Holst G J. Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. [J]. Planta, 1993, 189(2): 243-248. [42] Egertsdotter U, Von Arnold S. Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce(Picea abies)[J]. Physiologia Plantarum, 1995, 93(2): 334-345. [43] Namasivayam P, Skepper J N, Hanke D. Distribution of arabinogalactan protein(AGP)epitopes on the anther-derived embryoid cultures of Brassica napus [J]. Pertanika Journal of Tropical Agricultural Science, 2010, 33(2): 303-313. [44] Acosta-Garcia G, Vielle-Calzada J P. A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis [J]. Plant Cell, 2004, 16(10): 2614-2628. [45] Caliskan M, Turet M,Cuming A C. Formation of wheat(Triticum aestivum L.)embryogenic callus involves peroxide-generating germin-like oxalate oxidase [J]. Planta, 2004, 219(1): 132-140. [46] Domon J M, Dumas B, Laine E, et al. Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer [J]. Plant physiology, 1995, 108(1): 141-148. [47] Imin N, De Jong F, Mathesius U, et al. Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts [J]. Proteomics, 2004, 4(7): 1883-1896. [48] Imin N, Nizamidin M, Daniher D, et al. Proteomic analysis of somatic embryogenesis in Medicago truncatula: Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments [J]. Plant Physiology, 2005, 137(4): 1250-1260. [49] Zhen Y, Zhao Z Z, Zheng R H, et al. Proteomic analysis of early seed development in Pinus massoniana L [J]. Plant Physiology and Biochemistry, 2012, 54: 97-104. [50] Sterk P, Booij H, Schellekens G A, et al. Cell-specific expression of the carrot EP2 lipid transfer protein gene [J]. The Plant Cell, 1991, 3(9): 907-21. [51] Thoma S, Hecht U, Kippers A, et al. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis[J]. Plant Physiology, 1994, 105(1): 35-45. [52] Chugh A, Khurana P. Gene expression during somatic embryogenesis-recent advances [J]. Current Science, 2002, 83(6): 715-730. [53] Tchorbadjieva M I, Kalmukova R I, Pantchev I Y, et al. Monoclonal antibody against a cell wall marker protein for embryogenic potential of Dactylis glomerata L. suspension cultures [J]. Planta, 2005, 222(5): 811-819. [54] Rose R J, Mantiri F R, Kurdyukov S. The developmental biology of somatic embryogenesis[C]//Pua E C, Davey M R. Plant Developmental Biology: Biotechnology Perspectives. Berlin: Springer-Verlag, 2010. [55] Fehér A. The initiation phase of somatic embryogenesis: what we know and what we don’t [J]. Acta Biologica Szegediensis, 2008, 52(1): 53-56. |
[1] | XU Huihui, BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan, WANG Libing. The identification and functional analysis of BZR1 genes in yellowhorn [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 12-22. |
[2] | QI Ya, WANG Gaiping, XUANYUAN Xintong, PENG Daqing, LI Shuomin, LI Shouke, CAO Fuliang. Evaluation of medicinal asexual strains of Xanthoceras sorbifolium [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 38-44. |
[3] | CHEN Shengkan, GUO Dongqiang, DENG Ziyu, TANG Qinglan, LIAO Changkun, YANG Zhiwang, ZHU Yuanli, LI Changrong. Stability evaluation on tree height for introduced provenances of Corymbia citriodora subsp. variegata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 67-74. |
[4] | YAO Junxiu, REN Fei, WANG Yinhua, LI Qinghua, YAN Liping, ZHENG Yan, WU Dejun. Genetic diversity of germplasm resources of Sambucus based on SSR fluorescent marker [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 75-82. |
[5] | KE Xin, FEI Qi, XIA Xinrui, YE Jianren, ZHU Lihua. The factors influencing the embryogenic callus initiation and somatic embryo yield in Pinus elliottii resistant to pine needle brown spot disease [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 87-94. |
[6] | LIN Qiang, XU Jin, LI Shangqian, LIN Yunbin, ZHANG Yunqing, OUYANG Lei. The early selection and analysis of genetic variation of Cryptomeria japonica half-sib progeny from seed orchard in Fuding, Fujian Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 78-86. |
[7] | JIANG Bo, AN Xinmin. Precise genomic editing technology and its application in the improvement of woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 11-20. |
[8] | ZHANG Weixi, DING Mi, SU Xiaohua, LI Aiping, WANG Xiaojiang, YU Jinjin, LI Zhenghong, HUANG Qinjun, DING Changjun. Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 46-58. |
[9] | YANG Yuanmu, LI Na, CHEN Xinyu, XU Fang, PAN Wen, ZHANG Weihua. Study on wood variation of provenances and clones of Castanopsis hystrix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 41-50. |
[10] | YAN Pingyu, ZHANG Lei, WANG Jiaxing, FENG Kele, WANG Haohao, ZHANG Hanguo. Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 69-80. |
[11] | WANG Jiaxing, YAN Pingyu, SUN Baifei, LIU Jinhong, FENG Kele, ZHANG Hanguo. Growth variation and superior families early selection of Larix olgensis free-pollinated families [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 81-89. |
[12] | KUANG Zeyu, PENG Ye, FANG Yanming. Effects of volatile organic components of Ilex rotunda on its insect pollinator, Apis cerana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 254-260. |
[13] | LIU Li, QU Yinquan, YU Yanhao, WANG Qian, FU Xiangxiang. Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 67-75. |
[14] | LIU Xialan, SONG Ziqi, HU Fengrong, SHANG Xulan. A comparative study on leaf characters between diploid and tetraploid of Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 76-84. |
[15] | MA Tan, TIAN Ye, WANG Shujun, LI Wenhao, DUAN Qiying, ZHANG Qingyuan. Sex-specific leaf physiological responses of southern-type poplar to short-term intermittent soil drought [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 172-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||