A novel QTL mapping model for allometric growth and pleiotropic extension

LI Jie,WANG Zhong,LI Yongci,GAI Junyi,HUANG Zhongwen,WU Rongling

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2014, Vol. 38 ›› Issue (03) : 35-39.

PDF(1820084 KB)
PDF(1820084 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2014, Vol. 38 ›› Issue (03) : 35-39. DOI: 10.3969/j.issn.1000-2006.2014.03.007

A novel QTL mapping model for allometric growth and pleiotropic extension

  • LI Jie1,WANG Zhong2*,LI Yongci3*,GAI Junyi4,HUANG Zhongwen5,WU Rongling2
Author information +
History +

Abstract

Allometric growth has been widely studied as an important law in biology. In order to reveal allometric growth and its pleiotropism, a new model is proposed to map the QTL which is related to allometric growth based on the framework of functional mapping in this paper. Using this model, a soybean population of recombinant inbred lines(RIL)is demonstrated to analyze the QTLs which affect allometric growth between leaf biomass and total weight. The QTLs in the 24th linkage groups detected by this model are testified by the Logistic model to find out pleiotropism. This extended model improves the accuracy of QTL mapping and estimate of the parameters of allometric growth by means of two merits, which the dynamic traits of biological growth processes are conceived and multiple time points in the experimental data are employed.

Cite this article

Download Citations
LI Jie,WANG Zhong,LI Yongci,GAI Junyi,HUANG Zhongwen,WU Rongling. A novel QTL mapping model for allometric growth and pleiotropic extension[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(03): 35-39 https://doi.org/10.3969/j.issn.1000-2006.2014.03.007

References

[1] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121(1):185-199.
[2] Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics, 1994, 136(4):1457-1468.
[3] Wu R L, Ma C X, Casella G. Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations [J]. Genetics, 2002, 160(2):779-792.
[4] Zou F, Nie L, Wright F A, et al. A robust QTL mapping procedure [J]. Journal of Statistical Planning and Inference, 2009, 139(3):978-989.
[5] 童春发, 施季森. 回归法QTL作图效率的分析[J]. 南京林业大学学报:自然科学版, 2001, 25(4):12-16. Tong C F, Shi J S. Effects analysis using regression method for mapping QTL[J]. Journal of Nanjing University:Natural Sciences Edition, 2001, 25(4):12-16.
[6] 童春发. 林木遗传图谱构建和QTL定位的统计方法[J]. 南京林业大学学报:自然科学版, 2004, 28(1):109-114. Tong C F. Statistical methods for constructing genetic linkage maps and mapping QTLs in forest trees[J]. Journal of Nanjing University: Natural Sciences Edition, 2004, 28(1):109-114.
[7] Frary A, Nesbitt T C, Frary A, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289(5476): 85-88.
[8] Li C, Zhou A, Sang T. Rice domestication by reducing shattering [J]. Science, 2006, 311(5769):1936-1939.
[9] Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice [J]. Nature Genetics, 2009, 41(4):494-497.
[10] Ma C X, Casella G, Wu R L. Functional mapping of quantitative trait loci underlying the character process: A theoretical framework[J]. Genetics, 2002,161(4):1751-1762.
[11] Wu R L, Lin M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits [J]. Nature Reviews Genetics, 2006, 7(3):229-237.
[12] West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology [J]. Science, 1997, 276(5309):122-126.
[13] Ma C X, Casella G, Littell R C,et al. Exponential mapping of quantitative trait loci governing allometric relationships in organisms [J]. Journal of Mathematical Biology, 2003, 47(4): 313-324.
[14] Long F, Chen Y Q, Cheverud J M, et al. Genetic mapping of allometric scaling laws [J]. Genetical Research, 2006, 87(3):207-216.
[15] Li H Y, Huang Z W, Gai J Y, et al. A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry [J]. PLoS One, 2007, 2(11): 1245.
[16] Thomas Baeck, Fogel David B, Zbigniew Michalewicz. Evolutionary Computation 1:Basic Algorithms and Operators [M]. New York:Taylor and Francis Group, 2000.
[17] Zhao W, Chen Y Q, Casella G, et al. A non-stationary model for functional mapping of complex traits [J]. Bioinformatics, 2005, 21(10):2469-2477.
[18] Wu R L, Ma C X, Casella G. Statistical Genetics of Quantitative traits: Linkage, Maps, and QTL [M]. New York: Springer-Verlag, 2007.
[19] Beale E M L. Cycling in the dual simplex algorithm[J]. Naval Research Logistics Quarterly, 1955, 2(5):269-276.
[20] John D Head, Michael C Zerner. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries[J]. Chemical Physics Letters, 1985, 122(3):264-270.
[21] Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean(Glycine max L. Merr.)genetic map and their association with EST makers[J]. Theor Appl Genet, 2004, 108(6):1131-1139.
[22] Glazier D S. Beyond the ‘3/4-power law’ variation in the intra-and interspecific scaling of metabolic rate in animals [J]. Biological Reviews, 2005, 80(4):611-662.
[23] Klingenberg C P. Heterochrony and allometry: the analysis of evolutionary change in ontogeny [J]. Biological Reviews, 1998, 73(1):79-123.
PDF(1820084 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/