Chlorophyll fluorescence parameters and expression of cold-related transcription factors in regenerated plants of Dendrocalamus farinosus under cold stress

CHEN Rong, ZHANG Li, CAO Ying, LU Xueqin, HU Shanglian, DUAN Ning

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2014, Vol. 38 ›› Issue (04) : 39-44.

PDF(1449399 KB)
PDF(1449399 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2014, Vol. 38 ›› Issue (04) : 39-44. DOI: 10.3969/j.issn.1000-2006.2014.04.008

Chlorophyll fluorescence parameters and expression of cold-related transcription factors in regenerated plants of Dendrocalamus farinosus under cold stress

  • CHEN Rong, ZHANG Li, CAO Ying, LU Xueqin, HU Shanglian*, DUAN Ning
Author information +
History +

Abstract

In order to explore the cold-resistance of the regenerated plants from Dendrocalamus farinosus, the seedlings of D. farinosus(SS)and three regenerated plants(No.101-1c, No.42-1-B and No.90-3)induced from D. farinosus mature embryo in vitro were exposed to cold stress in this study. Their chlorophyll fluorescence parameters and expression level of cold-related transcription factors under cold stress were investigated. It aimed to the results showed that SS could be resistant to 0 ℃; No.90-3 could be resistant to 4 ℃,while No.101-1c and No.42-1-B could be resistant to-10 ℃. It indicated that the cold-resistance of three regenerated plants was different and had obvious difference with SS. Under cold stress, Fv/Fm, Y(Ⅱ)and qP of SS, No.101-1c and No.90-3 decreased with the temperature decreasing, while Y(Ⅱ) of No.42-1-B went up and then descended, but the Fv/Fm, NPQ and qP reduced. The expression level of WRKY and CBF1 from SS decreased, while the expression level of MYB increased. In No.90-3 and No.42-1-B, the increase of expression level of MYB, WRKY and CBF1 was observed, and the transcription accumulation of WRKY and CBF1 from No.101-1c increased, but the expression level of MYB reduced under the cold stress. The results of correlation analysis showed that the expression of WRKY and CBF1 from SS had a significant positive relationship with Y(Ⅱ); the relationship between MYB and Y(Ⅱ)from No.101-1c was positive significantly, while there was a significant negative relationship among NPQ, WRKY and CBF1. In addition, WRKY showed a significant negative relationship to qP of No.42-1-B.

Cite this article

Download Citations
CHEN Rong, ZHANG Li, CAO Ying, LU Xueqin, HU Shanglian, DUAN Ning. Chlorophyll fluorescence parameters and expression of cold-related transcription factors in regenerated plants of Dendrocalamus farinosus under cold stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(04): 39-44 https://doi.org/10.3969/j.issn.1000-2006.2014.04.008

References

[1] 邓江明, 简令成. 植物抗冻机理研究新进展:抗冻基因表达及其功能[J]. 植物学通报, 2001, 18(5): 521-530. Deng J M, Jian L C. Advances of studies on plant freezing-tolerance mechanism: freezing tolerance gene expression and its function[J]. Chinese Bulletin of Botany, 2001, 18(5): 521-530.
[2] Ying J, Lee E A, Tollenaar M. Response of maize leaf photosynthesis to low temperature during the grain-filling period[J]. Field Crops Research, 2000, 68(10): 87-96.
[3] 武辉, 周艳飞, 侯丽丽,等. 低温弱光胁迫对棉花幼苗叶绿素荧光特性及能量分配的影响[J]. 新疆农业科学, 2012, 49(3): 393-399. WU H, Zhou Y F, Hou L L, et al. Effects of low temperature and weak light stress on chlorophyll fluorescence characterisitics and energy allocation in cotton seedlings[J]. Xingjiang Agricultural Sciences, 2012, 49(3): 393-399.
[4] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annu Rev Plant Biol, 2006, 57: 781-803.
[5] Vannini C, Locatelli F, Bracale M, et al. Over-expression of the rice Osmby4 gene increases chilling and freezing tolerance of Arabidopsis thaliana[J]. Plant J, 2004, 37: 115-127.
[6] Huang T, Duman J G. Cloning and characterization of a thermal hysteresis(antifreeze)protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara[J]. Plant Mol Biol, 2002, 48(4): 339-350.
[7] 曹云飞, 张海娜, 肖凯. CBF转录因子介导的植物低温信号转导研究进展[J]. 棉花学报, 2007, 19(4): 304-311. Cao Y F, Zang H N, Xiao K. The signal transduction pathways under low temperature mediated by CBF transcription factor in plants[J]. Cotton Science, 2007, 19(4): 304-311.
[8] Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant and Cell Physiol, 2006, 47(1): 141-153.
[9] Hsieh T, Lee J T, Charng Y Y, et al. T1 Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J].Plant Physiology, 2002, 30: 618-626.
[10] 李蕾, 谢丙炎,戴小枫,等. WRKY转录因子及其在植物防御反应中的作用[J]. 分子植物育种, 2005, 3(3): 401-408. LI L, Xie B Y, Dai X F, et al. WRKY transcription factors and their roles in plant defense responses[J]. Molecular Plant Breeding, 2005, 3(3): 401-408.
[11] Ulker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5): 491-498.
[12] Agarwal M, HAO Y J, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49): 37636-37645.
[13] 胡尚连, 陈其兵, 孙霞,等. 丛生竹生理生化特性与遗传改良[M]. 北京: 科学出版社, 2012.
[14] Hu S L, Zhou J Y, Cao Y, et al. In vitro callus induction and plant regeneration from mature seed embryo and young shoots in a giant sympodial bamboo, Dendrocalamus farinosus(Keng et Keng f.)Chia et H.L. Fung[J]. African Journal of Biotechnology, 2011, 10(16): 3210-3215.
[15] Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool(RESTc)for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Research, 2002, 30(9): 36.
[16] 陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J]. 浙江农业学报, 2006, 18(1): 51-55.Chen J M, Yu X P, Chen J A. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses[J]. Acta Agriculturae Zhejiangensis, 2006, 18(1):51-55.
[17] 周蕴薇, 刘艳萍, 戴思兰. 用叶绿素荧光分析技术鉴定植物抗寒性的剖析[J]. 植物生理学通讯, 2006, 42(5): 945-950.Zhou Y W, Liu Y P, Dai S L. Identification of cold resistant plants by chlorophyll fluorescence analysis technique[J]. Plant Physiology Journal, 2006, 42(5): 945-950.
[18] 周建, 杨立峰, 郝峰鸽,等. 低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响[J]. 西北植物学报, 2009, 29(1): 136-142. Zhou J, Yang L F, Hao F G, et al. Photosynthesis and chlorophyll-fluorescence of Magnolia grandiflora seedlings under low temperature stress[J]. Acta Bot Boreal-Occident Sin, 2009, 29(1): 136-142.
[19] Fracheboud Y, Haldimann P, Leipner J, et al. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize[J]. Journal of Experimental Botany, 1999, 50: 1533-1540.
[20] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展[J]. 西北植物学报, 2006, 26(10): 2186-2196. Li X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses[J]. Acta Bot Boreal-Occident Sin, 2006, 26(10): 2186-2196.
[21] 敖金成, 苏文华, 张光飞,等. 不同光强下对马耳蕨叶绿素荧光参数的日变化[J]. 南京林业大学学报:自然科学版, 2011, 35(1): 135-138. Ao J C, Su W H, Zhang G F, et al. Diurnal changes of chlorophyll fluorescence parameters of Polystichum tsus-sinense(Hook)J. Sm. under different light intensities[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2011, 35(1): 135-138.
[22] 冯建灿, 胡秀丽, 毛训甲. 叶绿素荧光动力学在研究植物逆境生理中的应用[J]. 经济林研究, 2002, 20(4): 14-18.Feng J C, Hu X L, Mao X J. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance[J]. Economic Forest Researches, 2002, 20(4): 14-18.
[23] 陈儒钢, 巩振辉, 逯明辉,等. 植物抗逆反应中的转录因子网络研究进展[J]. 农业生物技术学报, 2010, 18(1): 126-134.Chen R G, Gong Z H, Lu M H, et al. Research advance of the transcription factors networks related to plant adverse environmental stress[J]. Journal of Agricultural Biotechnology, 2010, 18(1): 126-134.
[24] Chen Y H, Yang X Y, He K. The MYB transeription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Mol Biol, 2006, 60: 107-124.
[25] 张颖. 黄瓜低温胁迫应答转录因子CsWRKY46和CsWRKY21的表达特征与功能分析[D]. 北京: 中国农业科学院, 2012.Zhang Y. Expression characteristics and functional analysis of CsWRKY46 and CsWRKY21 response to chilling in cucumber[D]. Beijing: The Chinese Academy of Agricultural Sciences, 2012.
[26] Orvar B L, Sangwan V, Omann F, et al. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity[J]. Plant J, 2000, 23(6): 785-794.
[27] 刘蕾, 杜海, 唐晓凤,等. MYB转录因子在植物抗逆胁迫中的作用及其分子机理[J]. 遗传, 2008, 30(10): 1265-1271.Liu L, Du H, Tang X F, et al. The roles of MYB transcription factors on plant defense responses and its molecular mechanism[J]. Hereditas, 2008, 30(10): 1265-1271.
[28] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr Opin Plant Biol, 2003, 6(5): 410-417.
[29] Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14(8): 1675-1690.
PDF(1449399 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/