Variation trends of wood property along stem in Salix suchowensis

GUO Zengchao, HOU Jing, GUO Wei, YIN Tongming, CHEN Yingnan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2014, Vol. 38 ›› Issue (05) : 149-152.

PDF(1347911 KB)
PDF(1347911 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2014, Vol. 38 ›› Issue (05) : 149-152. DOI: 10.3969/j.issn.1000-2006.2014.05.029

Variation trends of wood property along stem in Salix suchowensis

  • GUO Zengchao, HOU Jing, GUO Wei, YIN Tongming, CHEN Yingnan*
Author information +
History +

Abstract

The intra-individual variations of the basic density and the contents of main wood chemical compounds, including cellulose, hemicellulose and lignin, along stems of S. suchowensis were measured in this study. Statistical analyses revealed that the basic density and the main wood compounds along the stem varied as following: the wood basic density decreased from stem base to stem top, in range of 0.331 2-0.385 4 g/cm3 for the measured samples. The contents of cellulose, lignin and hemicellulose were in ranges of 48.69%-56.89%,12.58%-16.42%,19.83%-23.76%, respectively, for the measured samples. Contents of cellulose and hemicellulose were found to decrease from stem base to stem top in all the measured samples. By contrast, lignin content exhibited a different variation trendency. For all measured samples, the lowest content appeared in the middle of the stem, and it increased towards both ends, with the highest lignin content appeared at the top of the stem. However, ANOVA statistics indicated that the basic density and the main wood chemical compounds varied insignificantly along the stems within individuals, while they varied significantly among different individuals.

Cite this article

Download Citations
GUO Zengchao, HOU Jing, GUO Wei, YIN Tongming, CHEN Yingnan. Variation trends of wood property along stem in Salix suchowensis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(05): 149-152 https://doi.org/10.3969/j.issn.1000-2006.2014.05.029

References

[1] Pashin A J. Textbook of Wood Technology [M]. 4th Edition.New York: Mcgraw-Hill Company, 1980.
[2] Beets P N, Gilchrist K, Jeffrey M P. Wood density of radiata pine: effect of nitrogen supply[J]. Forest Ecology and Management, 2001, 145(3): 173-180.
[3] 姜立春,刘铭宇,刘银帮.落叶松和樟子松木材基本密度的变异及早期选择[J].北京林业大学学报, 2013,35(1): 1-6.Jiang L C, Liu M Y, Liu Y B. Variation of wood basic density and early selection of dahurian larch and Mongolian pine[J]. Journal of Beijing Forestry University, 2013, 35(1): 1-6.
[4] Plomion C, Leprovost G, Stokes A.Wood formation in trees[J]. Plant Physiol, 2001, 127: 1513-1523.
[5] Yin T M, Zhang X Y, Gunter L, et al. Differential detection of genetic loci underlying stem and root lignin content in Populus[J]. PloSONE, 2010, 5(11): e14021.
[6] 秦特夫,黄洛华,周勤.杉木、I-72杨主要化学组成的株内纵向变异研究[J].林业科学研究,2004,17(1): 47-53.Qin T F, Huang L H, Zhou Q. Studies on longitu-dinal variation of main chemical compositions in Chinese-fir and Populus×euramaricana cv. I-72/58 tree[J]. Forest Research, 2004, 17(1): 47-53.
[7] Rönnberg-Wästljung A C, Gullberg U, Nilsson C. Genetic parameters of growth characters in Salix viminalis grown in Sweden[J]. Canadian Journal of Forest Research, 1994, 24(9): 1960-1969.
[8] Lindegaard K N, Barker J H A. Breeding willows for biomass[J]. Aspects of Applied Biology, 1997, 49: 155-162.
[9] Smart L B, Cameron K D. Genetic improvement of willow(Salix spp.)as a dedicated bioenergy crop [C] // Genetic Improvement of Bioenergy Crops. New York: Springer, 2008.
[10] 中国植物志编委会.中国植物志:20卷,第2分册 [M]. 北京: 科学出版社,1984.
[11] Adamskia R, Pakowski Z, Kokocinska M. Cross-fiber dry wood darcy permeability of energetic willow Salix viminalis [J]. Drying Technology, 2009, 27(12): 1379-1383.
[12] Monteoliva S, Senisterra G, Marlats R. Variation of wood density and fiber length in six willow clones(Salix spp.)[J]. IAWA Journal, 2005, 26(2): 197-202.
[13] 成俊卿.木材学[M].北京:中国林业出版社, 1985.
[14] Van Soest P J. Use of detergents in the analysis of fibrous feedsⅡ.A rapid method for the determinat-ion of fiber and lignin[J]. J Assoc Offic Anal Chem, 1963, 46: 829-835.
[15] 杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社, 1994.
[16] 国家技术监督局.GB/T 2677.10-1995 造纸原料综纤维素含量的测定[S]. 北京:中国标准出版社,1996.
[17] Fengel D, Wegener G. Wood Chemistry, Ultrastructure Reactions [M]. Berlin: Walter de Gruyter, 1984.
[18] 郭明辉. 天然林杉木材质变异规律的研究[J].世界林业研究, 1995, 8(S1): 426-432.Guo M H. Study the variation of natural forest Chinese fir[J]. Word Forestry Research, 1995, 8(S1): 426-432.
[19] Johanson K. Influence of initial spacing and tree class on the basic density of Picea abies[J]. Scand J For Res, 1993, 8(1):18-27.
[20] 冯弦, 陈宏伟, 刘永刚, 等. 山桂花人工林木材基本密度和纤维长度变异规律的研究[J]. 广西林业科学, 2003, 32(1): 20-23.Feng X, Chen H W, Liu Y G, et al. Research of basic density and fiber length variation in Paramic-helia bailonii[J]. Guangxi Forestry Science, 2003, 32(1): 20-23.
[21] 王明庥, 黄敏仁, 阮锡根, 等. 黑杨派新无性系木材性状的遗传改良[J]. 南京林业大学学报, 1989,13(3): 9-16. Wang M X, Huang M R, Ruan X G, et al. Genetic improvement of wood characters of new clones in the aigeiros section[J]. Journal of Nanjing Forestry University, 1989,13(3): 9-16.
[22] Plomion C, Leprovost G, Stokes A. Wood formation in trees[J]. Plant Physiol, 2001, 127: 1513-1523.
[23] Eckstein C F, Fladung M. Wood formation in rolC transgenic aspen trees[J]. Trees, 2000, 14:297-304.
[24] Solomon O L. Diurnal and circadian regulation of wood formation in Eucalyptus trees [D]. Pretoria: University of Pretoria, 2008.
PDF(1347911 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/