Water receiving technology of large slurry shield in river-crossing subway tunnel

BEN Zhijiang, YANG Ping, CHEN Changjiang, WANG Shengfu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2015, Vol. 39 ›› Issue (01) : 119-124.

PDF(1754421 KB)
PDF(1754421 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2015, Vol. 39 ›› Issue (01) : 119-124. DOI: 10.3969/j.issn.1000-2006.2015.01.022

Water receiving technology of large slurry shield in river-crossing subway tunnel

  • BEN Zhijiang1, YANG Ping1*, CHEN Changjiang2, WANG Shengfu1
Author information +
History +

Abstract

The large diameter slurry shield receiving end of Nanjing subway river-crossing tunnel in subway line No. 10 is water-rich sandy soil. The most appropriate way of reinforcement for the poor geological conditions were selected as follows: cement mixing pile-triaxial pressure rotary freezing spray pile-vertical consolidation, and the key technology and main points of large slurry shield water receiving were analyzed and summarized. The surface subsidence of the vertical frozen shield construction during receiving was investigated in situ test by adopting the combination of engineering application and actual research methods, and the vertical development rule of the temperature of the frozen soil wall was analyzed for judging whether the vertical frozen soil wall thickness and average temperature meet the requirements of shield to receive, and the time of getting rid portal was determined. Receiving end surface subsidence results showed that the land surface subsidence of the strengthening regional for the shield receiving is less than 4.6 mm, and we can draw a conclusion that the effect of the foundation reinforcement treatment is good. The water receiving technology can guarantee the rich sand layer security to receive large shield, and can provide important technical reference for future similar large shield receiving by this project research.

Cite this article

Download Citations
BEN Zhijiang, YANG Ping, CHEN Changjiang, WANG Shengfu. Water receiving technology of large slurry shield in river-crossing subway tunnel[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2015, 39(01): 119-124 https://doi.org/10.3969/j.issn.1000-2006.2015.01.022

References

[1] 王杰,杨平,张翔宇,等.水平冻结水泥土加固盾构洞门温度敏感性分析[J].南京林业大学学报:自然科学版,2013,37(2):43-45.Wang J, Yang P, Zhang X Y, et al. Level reinforced cement soil freezing temperature sensitivity analysis shield portal [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2013,37(2):43-45.
[2] 袁云辉,杨平,王海波.人工水平冻结帷幕强制解冻温度场数值分析[J]. 南京林业大学学报:自然科学版,2011,35(3):22-26. Yuan Y H, Yang P, Wang H B. Artificial level thaw frozen curtain mandatory temperature field numerical analysis [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2011,35(3):22-26.
[3] 赵峻,戴海蛟.盾构法隧道软土地层盾构进出洞施工技术[J].岩石力学与工程学报,2004(1):68-70. Zhao J, Dai H J. Shield tunnel in soft soil layer shield construction technology out of the hole [J]. Rock Mechanics and Engineering, 2004(1):68-70.
[4] 赵峻.盾构进出洞施工关键技术施工技术[J]. 施工技术,2008(2):101-105.Zhao J. Shield tunnel construction out of key construction technology[J]. Construction Technology, 2008(2):101-105.
[5] 鲍永亮,郑七振,唐建忠.上海软土地层盾构始发施工技术[J].铁道工程学报,2010(3):118-122. Bao Y L, Zheng Q Z, Tang J Z. Shield construction technology originating Shanghai soft soil [J]. Railway Engineering Society,2010(3):118-122.
[6] 刘玉林,刘天祥. 富水砂层地质条件下盾构接收技术[J]. 施工技术,2012(6):9-12. Liu Y L,Liu T X. Geological conditions of water-rich sand shield receiver technology[J]. Construction Technology, 2012(6):9-12.
[7] 胡俊.苏州地铁盾构隧道端头加固方式及其关键问题研究[D].南京:南京林业大学,2009. Hu J. Suzhou metro shield tunnel ends reinforcement approach and its keyissues[D].Nanjing:Nanjing Forestry University,2009.
[8] 焦齐柱.盾构直接切削围护墙的设计探讨[J].现代隧道技术,2007(2):66-75. Jiao Q Z. Column shield directly cutting the design of enclosure wall[J]. Modern Tunnelling Technology,2007(2):66-75.
[9] 李飞,凌波.盾构到达接收辅助装置的设计[J].建筑机械化,2009(9):66-68. Li F. Lin B. Shield designed to reach the receiver auxiliary devices [J]. Construction Mechanization,2009(9):66-68.
[10] 方俊.越江隧道工程盾构进洞施工风险控制[J].地下空间与工程学报,2013(2):33-45. Fang J. Cross-river tunnel construction project risk control shield hole [J]. Underground Space and Engineering,2013(2):33-45.
[11] 胡俊.高水压砂性土层地铁大直径盾构始发端头加固方式研究[D].南京:南京林业大学,2012.Hu J. Sandy soil high water pressure underground large diameter shield originating ends of reinforcing way [D]. Nanjing: Nanjing Forestry University, 2012.
[12] Zeng H, Hu J,Yang P. A Numerical Simulation Study on the Chemical Reinforcement Areaat Shield StartShaft[C]//2011 International Conference on Electric Technology and Civil Engineering(ICETCE),IEEE, 2011.
[13] 邢慧堂.超大型泥水盾构水中接收施工技术[J].铁道建筑,2010,8(1):449-452.Xing H T. Receiving large water slurry shield construction technology [J]. Railway Construction, 2010,8(1):449-452.
[14] 杨纪彦.超大型泥水盾构到达施工技术[J].隧道建设,2009,10(5):72-76.Yang J Y. Reach large slurry shield construction technology [J]. Tunnel Construction, 2009,10(5):72-76.
PDF(1754421 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/