JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2015, Vol. 39 ›› Issue (02): 163-168.doi: 10.3969/j.issn.1000-2006.2015.02.028
Previous Articles Next Articles
ZHAN Tianyi1, JIANG Jiali1, 2, LYU Jianxiong1*
Online:
2015-03-31
Published:
2015-03-31
CLC Number:
ZHAN Tianyi, JIANG Jiali, LYU Jianxiong. Research status and trend on wood dynamic viscoelastic properties[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(02): 163-168.
[1] Bodig J. Mechanics of wood and wood composites [M]. New York: Van Nostrand Reinhold Company, 1982. [2] 何曼君,陈维孝,董西侠. 高分子物理 [M]. 上海:复旦大学出版社, 2007. [3] 王逢瑚. 木质材料流变学 [M]. 哈尔滨:东北林业大学出版社, 2005. [4] 渡辺治人. 木材应用基础 [M]. 上海:上海科学技术出版社, 1984 [5] Becker H, Noack D. Studies on dynamic torsional viscoelasticity of wood [J]. Wood Science and Technology, 1968,2(3):213-230. [6] Jiang J L, Lu J X. Impact of temperature on the linear viscoelastic region of wood [J]. Canadian Journal of Forest Research, 2009,39(11):2092-2099. [7] Sun N J, Das S, Frazier C E. Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes [J]. Holzforschung,2007,61(1):28-33. [8] Placet V, Passard J, Perré P. Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 ℃: evidence of thermal degradation [J]. Journal of Materials Science,2008,43(9):3210-3217. [9] Bag R, Beaugraud J, Dole P, et al. Viscoelastic properties of woody hemp core [J]. Holzforschung,2011,65(2):239-247. [10] Zhang T, Bai S L, Zhang Y F, et al. Viscoelastic properties of wood materials characterized by nanoindentation experiments [J]. Wood Science and Technology,2012,46(5):1003-1016. [11] Tanimoto T, Nakano T. Side-chain motion of components in wood samples partially non-crystallized using NaOH-water solution [J]. Materials Science and Engineering: C,2013,33(3):1236-1241. [12] Birkinshaw C, Buggy M, Henn G G. Dynamic mechanical analysis of wood [J]. Journal of Materials Science Letters,1986,5(9):898-900. [13] Placet V, Passard J, Perré P. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95 ℃: Hardwood vs. softwood and normal wood vs. reaction wood [J]. Holzforschung,2007,61(5):548-557. [14] Brémaud I, Ka?m Y E, Guibal D, et al. Characterisation and categorization of the diversity in viscoelastic vibrational properties between 98 wood types [J]. Annals of Forest Science,2012,69(3):373-386. [15] Olsson A M, Salmén L. The effect of lignin composition on the viscoelastic properties of wood [J]. Nordic Pulp and Paper Research Journal,1997,12(3):140-144. [16] Havimo M. A literature-based study on the loss tangent of wood in connection with mechanical pulping [J]. Wood Science and Technology,2009,43(7-8):627-642. [17] Shupe T F, Groom L H, Eberhardt T L, et al. Selected mechanical and physical properties of Chinese tallow tree juvenile wood [J]. Forest Products Journal,2008,58(4):90-93 [18] Taghiyari H R, Karimi A N, Parsapajouh D, et al. Study on the longitudinal gas permeability of juvenile wood and mature wood [J]. Special Topics and Reviews in Porous Media-An International Journal,2010(1):31-38. [19] Bal B C, Bekta 瘙 塂 i. The effect of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis[J]. Drying Technology,2013,31(4):479-485. [20] Song K L, Yin Y F, Salmén L, et al. Changes in the properties of wood cell wall during the transformation from sapwood to heartwood [J]. Journal of Materials Science,2014,49(4):1734-1742. [21] Lenth C A. Wood material behavior in severe environments [D]. Virginia: Virginia State University,1999. [22] Backman A C, Lindberg K A H. Differences in wood material response for radial and tangential direction as measured by dynamic mechanical thermal analysis [J]. Journal of Materials Science,2001,36(15):3777-3783. [23] Gibson L J, Ashby M F. Cellular solids, structure and properties [M]. Oxford: Pergamon Press,1997. [24] Theocaris P S, Spathis G, Sideridis E. Elastic and viscoelastic properties of fibre-reinforced composite materials [J]. Fibre Science and Technology,1982,17(3):169-181. [25] Hoffmann G, Poliszko S. Temperature-frequency transformation in dielectric thermal analysis of wood relaxation properties [J]. Journal of Applied Polymer Science,1996,59(2):269-275. [26] Kelly S S, Rilas T G, Glasser W G. Relaxation behavior of amorphous components of wood [J]. Journal of Materials Science,1987,22(2):617-625. [27] Nakano T, Honma S, Matsumoto A. Physical properties of chemically-modified wood containing metal.Ⅰ. Effects of metal on dynamic mechanical properties of half-esterified wood [J]. Mokuzai Gakkaishi,1990,36(12):1063-1068. [28] Mano F J. The viscoelastic properties of cork [J]. Journal of Materials Science,2002,37(2):257-263. [29] Jiang J L, Lu J X. Anisotropic characteristics of wood dynamic viscoelastic properties [J]. Forest Products Journal,2009,59(7/8):59-64. [30] Norimoto M, Zhao G J. Dielectric-relaxation of water adsorbed on wood [J]. Mukuzai Gakkaishi,1993,39(3):249-257. [31] Hori R, Müller M, Watanaba U, et al. The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties [J]. Journal of Materials Science,2002,37(20):4279-4284. [32] Obataya E, Norimoto M, Gril J. The effects of adsorbed water on dynamic mechanical properties of wood [J]. Polymer,1998,39(14):3059-3064. [33] Mukudai J, Yata S. Modeling and simulation of viscoelastic behavior(tensile strain)of wood under moisture change [J]. Wood Science and Technology,1986,20(4):335-348. [34] Mukudai J, Yata S. Further modeling and simulation of viscoelastic behavior(bending deflection)of wood under moisture change [J]. Wood Science and Technology,1987,21(1):49-63. [35] Kojima Y, Yamamoto H. Effect of microfibril angle on the longitudinal tensile creep behavior of wood [J]. Journal of Wood Science,2004,50(4):301-306. [36] Engelund E T, Salmén L. Tensile creep and recovery of Norway spruce influenced by temperature and moisture [J]. Holzforschung,2012,66(8):959-965. [37] Cave I D. The anisotropic elasticity of the plant cell wall [J]. Wood Science and Technology,1968,2(4):268-278. [38] Cave I D. The longitudinal Young’s modulus of Pinus radiate [J]. Wood Science and Technology,1969,3(1):40-48. [39] Salmén L. Micromechanical understanding of the cell-wall structure [J]. Comptes Rendus Biologies,2004,327(9/10):873-880. [40] Bonarski J T, Olek W. Texture function application for wood ultrastructure description. Part 1: theory [J]. Wood Science and Technology,2006,40(2):159-171. [41] Page D H, Elhosseiny F, Winkler K, et al. Elastic modulus of single wood pulp fibers [J]. Tappi,1977,60(4):114-117. [42] Donaldson L. Microfibril angle: measurement, variation and relationships: A review [J]. IAWA Journal,2008,29(4):345-386. [43] Norimoto M. Dieletric properties of wood [J]. Wood Research, 1976,59/60:106-152. [44] Kimura M, Nakano J. Mechanical relaxation of cellulose at low temperatures [J]. Journal of Polymer Science: Polymer Letters Edition,1976,14(12):741-745. [45] Toba K, Yamamoto H. On the mechanical interaction between cellulose microfibrils and matrix substances in wood cell wall: effects of chemical pretreatment and subsequent repeated dry-and-wet treatment [J]. Journal of Wood Science,2013,59(5):359-366. [46] Lindberg J J, Laanter? M. Hydrogen bonds and macromolecules: The interaction between wood cells and water [J]. Journal of Macromolecular Science,1996,33(10):1385-1388. [47] Salmén L, Olsson A M. Interaction between hemicelluloses, lignin and cellulose: structure-property relationships [J]. Journal of Pulp and Paper Science,1998,24(3):99-103. [48] Bergander A, Salmén L. Cell wall properties and their effects on the mechanical properties of fibers [J]. Journal of Materials Science,2002,37(1):151-156. [49] ?keroholm M, Salmén L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy [J]. Holzforschung,2003,57(5):459-465. [50] Sugiyama M, Obataya E, Norimoto M. Viscoelastic properties of the matrix substance of chemically treated wood [J]. Journal of Materials Science,1998,33(14):3505-3510. [51] Salmén L. Viscoelastic properties of in situ lignin under water-saturated conditions [J]. Journal of Materials Science,1984,19(9):3090-3096. [52] Minato K, Bremaud I, Suzuki S, et al. Extractives of muirapiranga(Brosimun sp.)and its effects on the vibrational properties of wood [J]. Journal of Wood Science,2010,56(1):41-46. [53] Matsunage M, Obataya E, Minato K, et al. Working mechanism of adsorbed water on the vibrational properties of wood impregnated with extractives of pernambuco(Guilandina echinata Spreng.)[J]. Journal of Wood Science,2000,46(2):122-129. [54] Yano H. The changes in the acoustic properties of western red cedar due to methanol extraction [J]. Holzforschung,1994,48(6):491-495. [55] Yano H, Kyou K, Furuta Y, et al. Acoustic properties of Brazilian rosewood used for guitar back plates [J]. Mokuzai Gakkaishi,1995,41(1):17-24. [56] Skarr C. Wood-water relations [M]. New York: Springer-verlag,1988. [57] 赵广杰. 木材细胞壁中吸着水的介电弛豫 [M]. 北京:中国林业出版社,2002. [58] Cousins W J. Elastic modulus of lignin as related to moisture content [J]. Wood Science and Technology,1976,10(1):9-17. [59] Cousins W J. Young’s modulus of hemicellulose as related to moisture content [J]. Wood Science and Technology,1978,12(3):161-167. [60] Hillis W E. High temperature and chemical effects on wood stability. Part 1. General considerations [J]. Wood Science and Technology,1984,18(4):535-542. [61] Furuta Y, Aizawa H, Yano H, et al. Thermal-softening properties of water-swollen. Ⅳ: The effects of chemical constituents of the cell wall on thermal-softening properties of wood [J]. Mokuzai Gakkaishi,1997,43(9):725-730. [62] 周兆兵,那斌,罗婉珺,等.速生杨木动态黏弹性与初始含水率的关系 [J]. 南京林业大学学报: 自然科学版,2011,35(6): 96-100.Zhou Z B, Na B, Luo W J, et al. Relationships between dynamic viscoelastic properties and initial moisture content of fast-growing poplar [J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2011,35(6):96-100. [63] Obataya E, Yokuyama M, Norimoto M. Mechanical and dielectric relaxations of wood in a low temperature rangeⅠ. Relaxations due to methylol groups and adsorbed water [J]. Mokuzai Gakkaishi,1996,42(3):243-249. [64] Obataya E, Norimoto M, Tomita B. Mechanical relaxation process of wood in the low-temperature range [J]. Journal of Applied Polymer Science,2001,81(13):3338-3347. [65] Furuta Y, Obata Y, Kanayama K. Thermal-softening properties of water-swollen wood:the relaxation process due to water soluble polysaccharides [J]. Journal of Materials Science,2001,36(4):887-890. [66] 蒋佳荔,吕建雄. 木材动态粘弹性的含水率依存性 [J]. 北京林业大学学报,2006(S2):118-123. Jiang J L, Lü J X. Moisture dependence of the dynamic viscoelastic properties for wood [J]. Journal of Beijing Forestry University, 2006(S2): 118-123. |
[1] | ZHU Xianliang, ZHOU Changpin, JIA Cuirong, WENG Qijie, LI Fagen. Association of SNP loci and candidate genes for growth and wood density in Eucalyptus urophylla × E. tereticornis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 143-150. |
[2] | ZHU Yuehua, PAN Biao, YU Chaoguang, YIN Yunlong, ZHANG Yaoli. Comparative study on DBH growth and wood density of Taxodium hybrid ‘Zhongshanshan 118’ and Taxodium distichum [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 201-206. |
[3] | YANG Tingting,GUAN Fangli,XU Aijun. Multiple trees contour extraction method based on Graph Cut algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 91-98. |
[4] | WANG Dianbei, LI Jianhua,TIAN Chunyuan, ZHONG Yaqin, DUAN Lijun,YANG Xianzhong. Variation in fiber morphology among wild Pteroceltis tatarinowii populations in Hubei Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(01): 169-174. |
[5] | YANG Jianfei, NING Liping, YANG Liao, WANG Tianshi, CHEN Tiantian QIAN Yuying. Variation in radial increment of Lindera megaphylla and its wood anatomical characteristics [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(01): 181-187. |
[6] | YUAN Bingnan,DONG Yue,GUO Minghui. Immobilized of g-C3N4 on wood surface and characterization of its photodegradation property [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(01): 193-197. |
[7] | TU Kunkun, KONG Lizhuo, WANG Xiaoqing. Fabrication of superhydrophobic SiO2/epoxy resin/fluorinated alkylsilane nanocomposite coatings on wood surfaces [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 158-162. |
[8] | LIU Rong,YANG Shumin, LI Hui, ZHAI Zhiwen, FEI Benhua. Characteristics of pits in the vessel element of moso bamboo (Phyllostachys edulis(Carr.)J.Houz.) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 163-168. |
[9] | WANG Yuting, XU Huadong, ZHOU Hanting, CAO Yanjun, JI Li. Effects of environmental temperatures on internal moisture content of standing trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(05): 107-113. |
[10] | WANG Xueyu, LYU Wenhua. Strengths and light fastness of the strengthening-dyeing modified poplar wood [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(05): 147-151. |
[11] | GUAN Cheng, ZHANG Houjiang,MIAO Hu, ZHOU Lujing. Non-destructive determination of modulus of elasticity and in-plane shear modulus of full-size wood composite panels [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 153-159. |
[12] | LIU Fenglu, JIANG Fang, WANG Xiping, ZHANG Houjiang, LIU Xingkai. Stress wave propagation patterns in larch standing trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(03): 133-139. |
[13] | GAO Xin, CAI Jiabin, JIN Juwan, ZHUANG Shouzeng. Bound water content and pore size diameter distribution in swollen cell walls determined by NMR cryoporometry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 150-156. |
[14] | HE Sheng, XU Jun, WU Zaixing, BAO Yongjie, YU Hui, CHEN Yuhe. Compare of porous structure of moso bamboo and Pinus sylvestris L. lumber [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 157-162. |
[15] | XU Huadong, WANG Yuting, WANG Lihai, WANG Xiping. A review on ice formation and propagation in wood cells at subzero temperatures [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 169-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||