JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2018, Vol. 42 ›› Issue (05): 172-178.doi: 10.3969/j.issn.1000-2006.201709020
Previous Articles Next Articles
LIU Hailin, YIN Tongming*
Online:
2018-09-15
Published:
2018-09-15
CLC Number:
LIU Hailin, YIN Tongming. Progress on the whole genome sequencing and the application in woody plants[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 172-178.
[1] VENTER J C, ADAMS M D, MYERS E W, et al. The sequence of the human genome[J]. Science, 2001, 291(5507):1304-1351. DOI:10.1126/science.1058040. [2] ARABIDOPSIS GENOME I. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815. DOI:10.1038/35048692. [3] TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray)[J]. Science, 2006, 313(5793):1596-1604. DOI:10.1126/science.1128691. [4] LEE H, GURTOWSKI J, YOO S. Third-generation sequencing and the future of genomics[J/OL]. BioRxiv, 2016. DOI:10.1101/048603.https://doi.org/10.1101/048603. [5] SINGH R, LOW E T L, OOI L C L, et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK[J]. Nature, 2013, 500(7462):340. DOI:10.1038/nature12356. [6] AMBORELLA GENOME P. The Amborella genome and the evolution of flowering plants[J]. Science, 2013, 342(6165):1241089. DOI:10.1126/science.1241089. [7] GUAN R, ZHAO Y, ZHANG H, et al. Draft genome of the living fossil Ginkgo biloba[J]. Gigascience, 2016, 5(1):49. DOI:10.1186/s13742-016-0154-1. [8] XIA E H, ZHANG H B, SHENG J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6):866-877. DOI:10.1016/j.molp.2017.04.002. [9] SALOJARVI J, SMOLANDER O P, NIEMINEN K, et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch[J]. Nat Genet, 2017, 49(6):904-912. DOI:10.1038/ng.3862. [10] ARGOUT X, SALSE J, AURY J M, et al. The genome of Theobroma cacao[J]. Nat Genet, 2011, 43(2):101-108. DOI:10.1038/ng.736. [11] ARGOUT X, MARTIN G, DROC G, et al. The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies[J]. Bmc Genomics, 2017, 18(1):730. DOI:10.1186/s12864-017-4120-9. [12] QIN G, XU C, MING R, et al. The pomegranate(Punica granatum L.)genome and the genomics of punicalagin biosynthesis[J]. Plant J, 2017, 91(6):1108-1128. DOI:10.1111/tpj.13625. [13] YUAN Z, FANG Y, ZHANG T, et al. The pomegranate(Punica granatum L.)genome provides insights into fruit quality and ovule developmental biology[J]. Plant Biotechnol J, 2017, 16(7):1363-1374. DOI:10.1111/pbi.12875. [14] HUANG J, ZHANG C, ZHAO X, et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees[J]. PLoS Genet, 2016, 12(12):e1006433. DOI:10.1371/journal.pgen.1006433. [15] LIU M J, ZHAO J, CAI Q L, et al. The complex jujube genome provides insights into fruit tree biology[J]. Nature Communications, 2014, 5:5315. DOI:10.1038/ncomms6315. [16] WANG X, XU Y, ZHANG S, et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction[J]. Nat Genet, 2017, 49(5):765-772. DOI:10.1038/ng.3839. [17] NEALE D B, MARTINEZ-GARCIA P J, DE LA TORRE A R, et al. Novel Insights into tree biology and genome evolution as revealed through genomics[J]. Annu Rev Plant Biol, 2017, 68:457-483. DOI:10.1146/annurev-arplant-042916-041049. [18] SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci U S A, 1977, 74(12):5463-5467. [19] SHENDURE J, JI H. Next-generation DNA sequencing[J]. Nat Biotechnol, 2008, 26(10):1135-1145. DOI:10.1038/nbt1486. [20] MING R, HOU S, FENG Y, et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature, 2008, 452(7190):991-996. DOI:10.1038/nature06856. [21] JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161):463-467. DOI:10.1038/nature06148. [22] MYBURG A A, GRATTAPAGLIA D, TUSKAN G A, et al. The genome of Eucalyptus grandis[J]. Nature, 2014, 510(7505):356-362. DOI:10.1038/nature13308. [23] TURKTAS M, KURTOGLU K Y, DORADO G, et al. Sequencing of plant genomes: a review[J]. Turk J Agric For, 2015, 39(3):361-376. DOI:10.3906/tar-1409-93. [24] METZKER M L. Sequencing technologies: the next generation[J]. Nat Rev Genet, 2010, 11(1):31-46. DOI:10.1038/nrg2626. [25] GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: ten years of next-generation sequencing technologies[J]. Nat Rev Genet, 2016, 17(6):333-351. DOI:10.1038/nrg.2016.49. [26] VELASCO R, ZHARKIKH A, AFFOURTIT J, et al. The genome of the domesticated apple(Malus×domestica Borkh.)[J]. Nat Genet, 2010, 42(10):833. DOI:10.1038/ng.654. [27] DAI X, HU Q, CAI Q, et al. The willow genome and divergent evolution from poplar after the common genome duplication[J]. Cell Res, 2014, 24(10):1274-1277. DOI:10.1038/cr.2014.83. [28] XU Q, CHEN L L, RUAN X, et al. The draft genome of sweet orange(Citrus sinensis)[J]. Nat Genet, 2013, 45(1):59-66. DOI:10.1038/ng.2472. [29] WU J, WANG Z W, SHI Z B, et al. The genome of the pear(Pyrus bretschneideri Rehd.)[J]. Genome Research, 2013, 23(2):396-408. DOI:10.1101/gr.144311.112. [30] VERDE I, ABBOTT A G, SCALABRIN S, et al. The high-quality draft genome of peach(Prunus persica)identifies unique patterns of genetic diversity, domestication and genome evolution[J]. Nat Genet, 2013, 45(5):487-U447. DOI:10.1038/ng.2586. [31] MA T, WANG J Y, ZHOU G K, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nature Communications, 2013, 4:279. DOI:10.1038/ncomms3797. [32] NYSTEDT B, STREET N R, WETTERBOM A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497(7451):579-584. DOI:10.1038/nature12211. [33] ZIMIN A, STEVENS K A, CREPEAU M, et al. Sequencing and assembly of the 22-Gb loblolly pine genome[J]. Genetics, 2014, 196(3):875-890. DOI:10.1534/genetics.113.159715. [34] NEALE D B, WEGRZYN J L, STEVENS K A, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J]. Genome Biol, 2014, 15(3):R59. DOI:10.1186/gb-2014-15-3-r59. [35] STEVENS K A, WEGRZYN J L, ZIMIN A, et al. Sequence of the sugar pine megagenome[J]. Genetics, 2016, 204(4):1613-1626. DOI:10.1534/genetics.116.193227. [36] RHOADS A, AU K F. PacBio sequencing and its applications[J]. Genomics Proteomics Bioinformatics, 2015, 13(5):278-289. DOI:10.1016/j.gpb.2015.08.002. [37] SCHATZ M C, DELCHER A L, SALZBERG S L. Assembly of large genomes using second-generation sequencing[J]. Genome Research, 2010, 20(9):1165-1173. DOI:10.1101/gr.101360.109. [38] ENGLISH A C, SALERNO W J, HAMPTON O A, et al. Assessing structural variation in a personal genome-towards a human reference diploid genome[J]. Bmc Genomics, 2015, 16:286. DOI:10.1186/s12864-015-1479-3. [39] EID J, FEHR A, GRAY J, et al. Real-time DNA sequencing from single polymerase molecules[J]. Science, 2009, 323(5910):133-138. DOI:10.1126/science.1162986. [40] BERLIN K, KOREN S, CHIN C S, et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing[J]. Nat Biotechnol, 2015, 33(6):623-630. DOI:10.1038/nbt.3238. [41] VANBUREN R, BRYANT D, EDGER P P, et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum[J]. Nature, 2015, 527(7579):508-209. DOI:10.1038/nature15714. [42] DU H, YU Y, MA Y, et al. Sequencing and de novo assembly of a near complete indica rice genome[J]. Nat Commun, 2017, 8:15324. DOI:10.1038/ncomms15324. [43] GORDON D, HUDDLESTON J, CHAISSON M J P, et al. Long-read sequence assembly of the gorilla genome[J]. Science, 2016, 352(6281). DOI:10.1126/science.aae0344. [44] SCALLY A, DUTHEIL J Y, HILLIER L W, et al. Insights into hominid evolution from the gorilla genome sequence[J]. Nature, 2012, 483(7388):169-175. DOI:10.1038/nature10842. [45] BURTON J N, ADEY A, PATWARDHAN R P, et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions[J]. Nat Biotechnol, 2013, 31(12):1119-1125. DOI:10.1038/nbt.2727. [46] MASCHER M, GUNDLACH H, HIMMELBACH A, et al. A chromosome conformation capture ordered sequence of the barley genome[J]. Nature, 2017, 544(7651):426. DOI:10.1038/nature22043. [47] BICKHART D M, ROSEN B D, KOREN S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome[J]. Nat Genet, 2017, 49(4):643-650. DOI:10.1038/ng.3802. [48] JARVIS D E, HO Y S, LIGHTFOOT D J, et al. The genome of Chenopodium quinoa[J]. Nature, 2017, 542(7641):307. DOI:10.1038/nature21370. [49] PENDLETON M, SEBRA R, PANG A W C, et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies[J]. Nature Methods, 2015, 12(8):780-786. DOI:10.1038/Nmeth.3454. [50] JIAO Y P, PELUSO P, SHI J H, et al. Improved maize reference genome with single-molecule technologies[J]. Nature, 2017, 546(7659):524. DOI:10.1038/nature22971. [51] EISENSTEIN M. Startups use short-read data to expand long-read sequencing market[J]. Nature Biotechnology, 2015, 33(5):433-435. [52] ZHENG G X Y, LAU B T, SCHNALL-LEVIN M, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing[J]. Nature Biotechnology, 2016, 34(3):303-311. DOI:10.1038/nbt.3432. [53] SEO J S, RHIE A, KIM J, et al. De novo assembly and phasing of a Korean human genome[J]. Nature, 2016, 538(7624):243-247. DOI:10.1038/nature20098. [54] ZHANG G Q, LIU K W, LI Z, et al. The Apostasia genome and the evolution of orchids[J]. Nature, 2017, 549(7672):379-383. DOI:10.1038/nature23897. [55] CAI J, LIU X, VANNESTE K, et al. The genome sequence of the orchid Phalaenopsis equestris[J]. Nat Genet, 2015, 47(1):65-72. DOI:10.1038/ng.3149. [56] ZHANG G Q, XU Q, BIAN C, et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution[J]. Sci Rep, 2016, 6:19029. DOI:10.1038/srep19029. [57] STADEN R. A strategy of DNA sequencing employing computer programs[J]. Nucleic Acids Res, 1979, 6(7):2601-2610. [58] BATZOGLOU S, JAFFE D B, STANLEY K, et al. ARACHNE: a whole-genome shotgun assembler[J]. Genome Res, 2002, 12(1):177-189. DOI:10.1101/gr.208902. [59] JAFFE D B, BUTLER J, GNERRE S, et al. Whole-genome sequence assembly for mammalian genomes: Arachne 2[J]. Genome Res, 2003, 13(1):91-96. DOI:10.1101/gr.828403. [60] MYERS E W, SUTTON G G, DELCHER A L, et al. A whole-genome assembly of drosophila[J]. Science, 2000, 287(5461):2196-2204. [61] HUANG X, MADAN A. CAP3: A DNA sequence assembly program[J]. Genome Res, 1999, 9(9):868-877. [62] MULLIKIN J C, NING Z M. The phusion assembler[J]. Genome Research, 2003, 13(1):81-90. DOI:10.1101/gr.731003. [63] WARREN R L, SUTTON G G, JONES S J M, et al. Assembling millions of short DNA sequences using SSAKE[J]. Bioinformatics, 2007, 23(4):500-501. DOI:10.1093/bioinformatics/btl629. [64] IDURY R M, WATERMAN M S. A new algorithm for DNA sequence assembly[J]. J Comput Biol, 1995, 2(2):291-306. DOI:10.1089/cmb.1995.2.291. [65] PEVZNER P A, TANG H X, WATERMAN M S. An Eulerian path approach to DNA fragment assembly[J]. P Natl Acad Sci USA, 2001, 98(17):9748-9753. DOI:DOI 10.1073/pnas.171285098. [66] ZERBINO D R, BIRNEY E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Research, 2008, 18(5):821-829. DOI:10.1101/gr.074492.107. [67] SIMPSON J T, WONG K, JACKMAN S D, et al. ABySS: a parallel assembler for short read sequence data[J]. Genome Research, 2009, 19(6):1117-1123. DOI:10.1101/gr.089532.108. [68] GNERRE S, MACCALLUM I, PRZYBYLSKI D, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data[J]. Proc Natl Acad Sci U S A, 2011, 108(4):1513-1518. DOI:10.1073/pnas.1017351108. [69] KAJITANI R, TOSHIMOTO K, NOGUCHI H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads[J]. Genome Res, 2014, 24(8):1384-1395. DOI:10.1101/gr.170720.113. [70] MILLER J R, KOREN S, SUTTON G. Assembly algorithms for next-generation sequencing data[J]. Genomics, 2010, 95(6):315-327. DOI:10.1016/j.ygeno.2010.03.001. [71] CHIN C S, ALEXANDER D H, MARKS P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data[J]. Nat Methods, 2013, 10(6):563-569. DOI:10.1038/nmeth.2474. [72] CHIN C S, PELUSO P, SEDLAZECK F J, et al. Phased diploid genome assembly with single-molecule real-time sequencing[J]. Nat Methods, 2016, 13(12):1050-1054. DOI:10.1038/nmeth.4035 [73] KOREN S, WALENZ B P, BERLIN K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Research, 2017, 27(5):722-736. DOI:10.1101/gr.215087.116. [74] KOREN S, HARHAY G P, SMITH T P, et al. Reducing assembly complexity of microbial genomes with single-molecule sequencing[J]. Genome Biol, 2013, 14(9):R101. DOI:10.1186/gb-2013-14-9-r101. [75] YE C X, HILL C M, WU S G, et al. DBG2OLC: Efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies[J]. Sci Rep-Uk, 2016, 6:594. DOI:10.1038/srep31900. [76] YE C, MA Z S. Sparc: a sparsity-based consensus algorithm for long erroneous sequencing reads[J]. PeerJ, 2016, 4:e2016. DOI:10.7717/peerj.2016. [77] BOETZER M, HENKEL C V, JANSEN H J, et al. Scaffolding pre-assembled contigs using SSPACE[J]. Bioinformatics, 2011, 27(4):578-579. DOI:10.1093/bioinformatics/btq683. [78] BOETZER M, PIROVANO W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information[J]. Bmc Bioinformatics, 2014, 15(1):578-579. DOI:10.1186/1471-2105-15-211. [79] LIU Z, ENGLISH A C, RICHARDS S, et al. Mind the gap: upgrading genomes with Pacific biosciences RS long-read sequencing technology[J]. PloS One, 2012, 7(11):e47768. DOI:10.1371/journal.pone.0047768. [80] CONTE M A, KOCHER T D. An improved genome reference for the African cichlid, Metriaclima zebra[J]. Bmc Genomics, 2015, 16:724. [81] ZHU J, JIANG F, WANG X, et al. Genome sequence of the small brown planthopper, Laodelphax striatellus[J]. Gigascience, 2017, 6(12):1-12. DOI:10.1093/gigascience/gix109. [82] STEGGER M, DRIEBE E M, ROE C, et al. Genome sequence of Staphylococcus aureus strain CA-347, a USA600 methicillin-resistant isolate[J]. Genome Announc, 2013, 1(4):e00517-13. DOI:10.1128/genomeA.00517-13. [83] FEUILLET C, LEACH J E, ROGERS J, et al. Crop genome sequencing: lessons and rationales[J]. Trends Plant Sci, 2011, 16(2):77-88. DOI:10.1016/j.tplants.2010.10.005. [84] TAUDIEN S, STEUERNAGEL B, ARIYADASA R, et al. Sequencing of BAC pools by different next generation sequencing platforms and strategies[J]. BMC Res Notes, 2011, 4:411. DOI:10.1186/1756-0500-4-411. [85] JIAO W B, SCHNEEBERGER K. The impact of third generation genomic technologies on plant genome assembly[J]. Curr Opin Plant Biol, 2017, 36:64-70. DOI:10.1016/j.pbi.2017.02.002. [86] YASUI Y, HIRAKAWA H, OIKAWA T, et al. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties[J]. DNA Res, 2016, 23(6):535-546. DOI:10.1093/dnares/dsw037. |
[1] | YIN Huakang, ZHANG Jindong, HUANG Jinyan, PU Guanhua, MAO Ze’en, ZHOU Caiquan, HUANG Yaohua, FU Liqiang. Spatial distribution of bamboo, the staple food of giant panda (Ailuropoda melanoleuca) in Mabian Dafengding Nature Reserve, Sichuan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 187-193. |
[2] | FAN Mingyang, HU Meng, YNAG Yuan, FANG Yanming. Community classification, structures and species diversity characteristics of Pinus massoniana and P. hwangshanensis in the eastern China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 47-58. |
[3] | LUO Chuying, SHE Jiyun, TANG Zichao. Prediction of potential distribution areas of the endangered Cathaya argyrophylla based on shared socio-economic pathways (SSPs) climate scenarios [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 161-168. |
[4] | LI Yuhan, DING Yanfen, ZHANG Changwei. Niche and interspecific association of dominant herbaceous plants in the outer Qinhuai River,Nanjing City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 203-210. |
[5] | ZHAO Ting, BAI Hongying, DENG Chenhui, TA Zhijie. A quantitative divided method for the vegetation vertical belt based on NDVI and DEM: a case study of Taibai Mountain on the south slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 165-171. |
[6] | WEI Yajuan, GUO Jing, DANG Xiaohong, Xie Yunhu, WANG Ji, LI Xiaole, WU Huimin. Morphological characteristics and influencing mechanisms of Nitraria tangutorum nebkhas at different sandy land types in desert oasis ecotone of Jilantai [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 172-180. |
[7] | YUAN Jingqi, YU Zhongliang, LAN Xuehan, LI Chenghong, TIAN Nianjun, DU Fengguo. Effects of shading treatments on photosynthetic characteristics of endangered plant Thuja koraiensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 58-66. |
[8] | GONG Maojia, WANG Juan, FU Xiaoyong, KOU Weili, LU Ning, WANG Qiuhua, LAI Hongyan. Suitable regions forecasting and environmental influencing factors of Malania oleifera in Yunnan and Guangxi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 44-52. |
[9] | CHEN Lin, PAN Tingting, LYU Xiaodong, WANG Zhangpei, CHENG Lin. New records of seed plants from Jiangxi Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 232-234. |
[10] | MIAO Jing, WANG Yong, WANG Lu, XU Xiaogang. Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 193-198. |
[11] | PAN Tingting, CHEN Lin, YANG Guodong, YI Xiangui, WANG Xianrong. Species diversity of communities and environmental interpretation of the suburban forest in Northern Nanjing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 48-54. |
[12] | WANG Yingying, MA Yuying, ZHANG Yong, HUANG Zheng. Biodiversity and the risk of infectious diseases [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 9-11. |
[13] | HUANG Yaru, XIN Zhiming, LI Yonghua, MA Yingbin, DONG Xue, LUO Fengmin, LI Xinle, DUAN Ruibin. Seasonal variation of the stem sap flow of artificial Haloxylon ammodendron (C.A.Mey.) Bunge and its relationship with meteorological factors in Ulan Buh Desert [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 131-139. |
[14] | DUAN Na, WANG Ji, HAO Yuguang, GAO Junliang, CHEN Xiaona, DUO Puzeng. Effects of gas exchange and morphological characteristics of desert species Nitraria tangutorum under moisture variation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 32-38. |
[15] | CHEN Yuheng, LÜ Yiwei, YIN Xiaojie. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 113-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||