JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (01): 154-160.doi: 10.3969/j.issn.1000-2006.201807011
Previous Articles Next Articles
WEI Shuhe1, XU Lei1, 2, HAN Ran 1,2, DOU Xuekai 1,2, YANG Wei 1,2
Online:
2019-01-28
Published:
2019-01-28
CLC Number:
WEI Shuhe, XU Lei, HAN Ran , DOU Xuekai , YANG Wei . Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 154-160.
[1] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. DOI:10.1016/j.chemosphere.2016.12.116. [2] PEPPICELLI C, CLEALL P, SAPSFORD D, et al. Changes in metal speciation and mobility during electrokinetic treatment of industrial wastes: implications for remediation and resource recovery[J]. Science of the Total Environment, 2017, 624: 1488-1503. DOI:10.1016/j.scitotenv.2017.12.132. [3] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: status and opportunities[J]. Chemosphere, 2013, 93(4): 626-636. DOI:10.1016/j.chemosphere.2013.06.029. [4] LOBO B M C, PREZ-SANZ A, MARTNEZ-IIGO M J, et al. Influence of coupled electrokinetic-phytoremediation on soil remediation[G]// Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. New Jersey: John Willey & Sons Inc., 2009: 417-437. DOI:10.1002/9780470523650.ch20. [5] DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1):1-31. DOI: 10.1016/j.jhazmat.2007.10.043. [6] HE R, XI G, LIU K. Alleviating effect of extremely low frequency pulsed electric field on drought damage of maize seedling roots[J]. Journal of Luminescence, 2017, 188: 441-447. DOI:10.1016/j.jlumin.2017.04.042. [7] QUAGLIARIELLO V, IAFFAIOLI R V, FALCONE M, et al. Effect of pulsed electric fields-assisted extraction on anti-inflammatory and cytotoxic activity of brown rice bioactive compounds[J]. Food Research International, 2016, 87:115-124. DOI: 10.1016/j.foodres.2016.07.005. [8] KAG S, HAMID N, OEY I, et al. Red cherries(Prunus avium var. stella)processed by pulsed electric field-physical, chemical and microbiological analyses[J]. Food Chemistry, 2018, 240:926-934. DOI: 10.1016/j.foodchem.2017.08.017. [9] LUO J, YANG D, QI S, et al. Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field[J]. Ecotoxicology and Environmental Safety, 2018,165:404-410. DOI:10.1016/j.ecoenv.2018.09.031. [10] O’CONNOR C S, LEPPI N W, EDWARDS R, et al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study[J]. Environmental Monitoring & Assessment, 2003, 84(1/2):141-158. DOI: 10.1023/A:1022851501118. [11] LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard(Brassica juncea)with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1):3-9. DOI: 10.1016/j.microc.2003.10.002. [12] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4):729-735. DOI: 10.11766/trxb200710170424. CANG L, ZHOU D M, WU D Y. Effects of horizontal exchange electric field and edds application on ryegrass uptake of copper/zinc and soil characteristics[J]. Acta Pedologica Sinica, 2009, 46(4):729-735. [13] ABOUGHALMA H, BI R, SCHLAAK M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants[J]. Journal of Environmental Science and Health, Part A: Hazard Subst Environ Eng, 2008, 43(8): 926-933.DOI: 10.1080/10934520801974459. [14] BI R, SCHLAAK M, SIEFERT E, et al.Influence of electrical fields(AC and DC)on phytoremediation of metal polluted soils with rapeseed(Brassica napus)and tobacco(Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3):318-326.DOI: 10.1016/j.chemosphere.2010.12.052. [15] CANG L, WANG Q, ZHOU D, et al. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard[J]. Separation and Purification Technology, 2011, 79(2): 246-253. DOI: 10.1016/j.seppur.2011.02.016. [16] PUTRA R S, OHKAWA Y, TANAKA S.Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass(Poa pratensis L.)[J]. Separation and Purification Technology, 2013, 102(1):34-42. DOI: 10.1016/j.seppur.2012.09.025. [17] CHIRAKKARA R A, REDDY K R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil[J]. Electrochimica Acta, 2015, 181:179-191. DOI: 10.1016/j.electacta.2015.01.025. [18] 肖文丹, 叶雪珠, 徐海舟,等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4):927-937. DOI:10.11766/trxb201612130539. XIAO W D, YE X Z, XU H Z, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum alfredii[J]. Acta Pedologica Sinica, 2017, 54(4):927-937. [19] LUO J, CAI L, QI S, et al. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation[J]. Ecotoxicol Environ Saf, 2018, 149:241-247.DOI: 10.1016/j.ecoenv.2017.12.005. [20] CANG L, ZHOU D M, WANG Q Y, et al.Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities[J]. Electrochimica Acta, 2012, 86(4):41-48. DOI: 10.1016/j.electacta.2012.04.112. [21] MIRANSARI M.Soil microbes and plant fertilization[J]. Applied Microbiology and Biotechnology, 2011, 92(5):875-885. DOI: 10.1007/s00253-011-3521-y. [22] LUO Q, ZHANG X, WANG H, et al.The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil[J]. Journal of Hazardous Materials, 2005, 121(1):187-194. DOI: 10.1016/j.jhazmat.2005.02.007. [23] ACOSTA-SANTOYO G, CAMESELLE C, BUSTOS E. Electrokinetic-Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds[J]. Environmental Research, 2017, 158:118. DOI: 10.1016/j.envres.2017.06.004. [24] HUANG J W, SHAFF J E, GRUNES D L, et al. Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars[J]. Plant Physiology, 1992, 98(1):230-237. DOI: 10.1104/pp.98.1.230. [25] CHO M R, THATTE H S, SILVIA M T, et al.Transmembrane calcium influx induced by ac electric fields.[J]. Faseb Journal, 1999, 13(6):677. DOI: 10.1096/fasebj.13.6.677. [26] 姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 临安:浙江农林大学, 2015. YAO G H. Effects of alternating current(AC)field and organic materials on improving the efficiency of Sedum alfredii Hance to remediate heavy metal contaminated soil[D]. Lin’an:Zhejiang A & F University, 2015. [27] ROJANAPITHAYAKORN D, ARIYAKANON N. Electrokinetic enhancement on phytoremediation in Zinc contaminated soil by ruzi grass[J]. Environmentasia, 2016, 9(1). DOI: 10.14456/ea.1473.11. [28] 方振东, 汪家权, 盛晶梦. 不同电极电动修复铜镉复合污染土壤的研究[J]. 广东化工, 2014, 41(13):23-24. DOI:10.3969/j.issn.1007-1865.2014.13.011. FANG Z D, WANG J Q, SHENG J M. Research on electrokinetic remediation of copper and cadmium contaminated soil with different electrodes[J]. Guangdong Chemical Industry, 2014, 41(13):23-24. [29] 黄益宗, 郝晓伟, 雷鸣,等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 3(3):409-417. DOI:10.11654/jaes.2013.03.001. HUANG Y Z, HAO X W, LEI M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 3(3):409-417. [30] LóPEZ-VIZCAíNO R, RISCO C, ISIDRO J, et al.Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: some notes about the transport of inorganic species[J]. Chemosphere, 2017, 166:540-548.DOI: 10.1016/j.chemosphere.2016.09.113. [31] ZHOU D M, CHEN H F, CANG L, et al.Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field[J]. Chemosphere, 2007, 67(8):1671-1676. DOI: 10.1016/j.chemosphere.2006.11.042. [32] HODKO D, HYFTE J V, DENVIR A, et al. Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena: US, 6145244[P]. 2000-11-14. [2018-11-05]http://www.freepaterotonline.com/6145244.pdf. [33] LAI H Y, CHEN Z S. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink(Dianthus chinensis)[J]. Chemosphere, 2005, 60(8):1062-1071.DOI: 10.1016/j.chemosphere.2005.01.020. [34] KIM S H, LEE I S. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil[J]. Bull Environ Contam Toxicol, 2010, 84(2):255-259. DOI: 10.1007/s00128-009-9888-0. [35] LIM J M, JIN B, BUTCHER D J. A Comparison of electrical stimulation for electrodic and EDTA-enhanced phytoremediation of lead using Indian mustard(Brassica juncea)[J]. Bulletin of the Korean Chemical Society, 2012, 33(33):2737-2740. DOI: 10.5012/bkcs.2012.33.8.2737. [36] EBRAHIMI M. Effect of EDTA and DTPA on phytoremediation of Pb-Zn contaminated soils by Eucalyptus camaldulensis Dehnh and effect on treatment time.[J]. Desert, 2014. DOI: 10.22059/JDESERT.2014.51055. [37] 徐海舟. 直流电场-东南景天联合修复Cd污染土壤效率的研究[D]. 临安:浙江农林大学, 2015. XU H Z. Efficiency of direct current(DC)field and Sedum alfredii Hance on remediation to cadmium contaminated soil[D].Lin’an:Zhejiang A & F University, 2015. [38] SINEGANI A A S, TAHNASBIAN I, SINEGANI M S. Chelating agents and heavy metal phytoextraction[G]// Heavy Metal Contamination of Soils. Berlin: Springer International Publishing, 2015:367-393. DOI: 10.1007/978-3-319-14526-6. |
[1] | WU Yi, LIU Yong, ZHOU Xiaojie, WANG Kaiyong, WANG Wenxiao. Changes in leaf color and their relationship with leaf mineral elements under soil alkaline conditioners of Acer×freemanii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 115-122. |
[2] | CHENG Caiyun, XUE Jianhui, MA Jie. Assessment of different Karst plantation types on soil quality based on a minimum data set [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 134-142. |
[3] | LU Qiwei, TUO Yunfei, ZHENG Yang, LUO Wei, DAI Qinlong, HE Xiahong. Research on characteristics of soil infiltration at different altitude gradients in Liziping Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 143-152. |
[4] | YANG Fu, WANG Hui, WANG Qin, JIANG Chunqian, ZHOU Yanxu, LI Lubin. Screening of growth-promoting bacteria in the rhizosphere soil of Phyllostachys edulis and their growth-promoting effects in Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 83-90. |
[5] | LIU Chaonan, WANG Enheng, CHEN Xiangwei, WANG Yating, LI Jinnuo. Variation characteristics of soil structure in different farmlands across the typical black soil region in northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 194-200. |
[6] | ZHANG Miao, RUAN Honghua, SHEN Caiqin, DING Xuenong, CAO Guohua. Effects of long-term application of biogas slurry on soil carbon, nitrogen, phosphorus and their metering ratio in poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 102-110. |
[7] | ZHOU Mengtian, LIU Li, FU Ruoxian, LI Xiaogang. Effects of litter decomposition of Cunninghamia lanceolata and Schima superba on soil carbon contents, nitrogen contents and enzyme activities in Cunninghamia lanceolata plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 131-138. |
[8] | CHEN Hui, WANG Gaiping, PENG Fangren, ZHU Yunfen, ZHANG Yu, WANG Han. Soil quality assessment for Carya illinoensis-Paeonia ostii under various patterns [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 177-183. |
[9] | XIE Yanyan, GUO Ziwu, LIN Shuyan, ZUO Keyi, YANG Liting, XU Sen, GU Rui, CHEN Shuanglin. Soil particle distribution and water infiltration characteristics during vegetation succession in Phyllostachys edulis stands [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 108-116. |
[10] | WU Yan, HUANG Qing, LIU Xun, ZHENG Rui, CEN Jiabao, DING Bo, ZHANG Yunlin, FU Yuhong. Effects of Pinus massoniana plantation age on soil physical and chemical properties in Karst areas in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 99-107. |
[11] | ZUO Zhuang, ZHANG Yun, CUI Xiaoyang. Early effects of fire on soil nitrogen content and form in Larix gmelinii forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 147-154. |
[12] | SUN Jinwei, WANG Shengyan, FAN Diwu, ZHU Yongli. Effects of C, N and P additions on soil respiration in woodland under Cd stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 140-146. |
[13] | CHEN Ming, LIU Liang. Study on the effect of urban topsoil sampling interval on the variation pattern of magnetic susceptibility of soil profile [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 61-69. |
[14] | ZHANG Xiang, DING Mingming, LIN Jie, LI Zhuoyuan, CUI Linlin, GUO Geng, YANG Hao. Spatial differentiation of soil properties in hilly red soil region under water erosion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 77-84. |
[15] | YANG Rui, WU Chaoming, ZHU Li, HU Haibo. Study on soil erosion characteristics of economic forest slope field in southern Jiangsu hilly area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 70-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||