JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (02): 86-92.doi: 10.3969/j.issn.1000-2006.201806018
Previous Articles Next Articles
LIU Zhongyuan, JIANG Bo, LÜ Jiaxin, LI Xinping, GAO Caiqiu*
Online:
2019-03-30
Published:
2019-03-30
CLC Number:
LIU Zhongyuan, JIANG Bo, LÜ Jiaxin, LI Xinping, GAO Caiqiu. Interacting proteins of Tamarix hispida Th2CysPrx and their expression pattern analysis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 86-92.
[1] DAT J, VANDENABEELE S, VRANOVÃ E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular Molecular Life Sciences, 2000, 57(5): 779-795. DOI:10.1007/s000180050041. [2] CORPAS F J, SEVILLA F. Salt-induced oxidative stress mediated by activated oxygen species in pea leafmitochondria[J]. Physiologia Plantarum, 2010, 89(1): 103-110. DOI: 10.1111/j.1399-3054. 1993. tb01792.x. [3] CIRCU M L, AW T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Biology and Medicine, 2010, 48(6): 749-762. DOI: 10.1016/j.freeradbiomed.2009.12.022. [4] LIM Y S, CHA M K, KIM H K, et al. Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo[J]. Biochemical Biophysical Research Communications, 1993, 192(1): 273-280. DOI: 10.1006/bbrc.1993.1410. [5] BAIER M, DIETZ K J. Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases[J]. Plant Molecular Biology, 1996, 31(3): 553-564. DOI: 10.1007/BF00042228. [6] BAIER M, DIETZ K J. The two-Cys peroxiredoxin Bas1: insight in a new family of plant peroxidases[J]. Plant Peroxidases, Biochemistry and Physiology, 1996: 204-209. [7] BAIER M, DIETZ K J. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants[J]. The Plant Journal, 1997, 12(1): 179-190. DOI: 10.1046/j.1365-313X.1997.12010179.x. [8] CHEONG N E, CHOI Y O, LEE K O, et al. Molecular cloning, expression, and functional characterization of a 2Cys-peroxiredoxin in chinese cabbage[J]. Plant Molecular Biology, 1999, 40(5): 825-834. DOI: 10.1023/A:1006271823973. [9] BERBERICH T, UEBLER M, FEIERABEND J. Cloning of a cDNA encoding a thioredoxin peroxidase(TPx)homolog from winter rye(Secale cereale L)(Accession No. AF076920)(PGR98-167)[J]. Plant Physiology, 1998, 118: 711. DOI:10.1097/00003226-200204000-00006. [10] HORLING F, BAIER M, DIETZ K J. Redox-regulation of the expression of the peroxide-detoxifying chloroplast 2-cys peroxiredoxin in the liverwort Riccia fluitans[J]. Planta, 2001, 214(2): 304-313. DOI: 10.1007/s004250100623. [11] VEAL E A, FINDLAY V J, DAY A M, et al. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase[J]. Molecular Cell, 2004, 15(1): 129-139. DOI: 10.1016/j.molcel.2004.06.021. [12] BARFORD D. The role of cysteine residues as redox-sensitive regulatory switches[J]. Current Opinion in Structural Biology, 2004, 14(6): 679-686. DOI: 10.1016/j.sbi.2004.09.012. [13] YANG K S, KANG S W, WOO H A, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid[J]. Journal of Biological Chemistry, 2002, 277(41): 38029-38036. DOI: 10.1074/jbc.M206626200. [14] HIROTSU S, ABE Y, OKADA K, et al. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product[J]. Proceedings of the National Academy of Sciences, 1999, 96(22): 12333-12338. DOI: 10.1073/pnas.96.22.12333. [15] MOON J C, HAH Y S, KIM W Y, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death[J]. Journal of Biological Chemistry, 2005, 280(31): 28775-28784. DOI: 10.1074/jbc.M505362200. [16] JANG H H, LEE K O, CHI Y H, et al. Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function[J]. Cell, 2004, 117(5): 625-635. DOI: 10.1016/j.cell.2004.05.002. [17] HOSSAIN M S, ELSAYED A I, MOORE M, et al. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet[J]. Journal of Experimental Botany, 2017, 68(5): 1283-1298. DOI: 10.1093/jxb/erx019. [18] ZHANG H, XU N, LI X, et al. Overexpression of 2-Cys Prx increased salt tolerance of photosystem II in tobacco[J]. International Journal of Agriculture Biology, 2017, 19(4):1-42. DOI: 10.17957/IJAB/15.0348. [19] KIM K H, ALAM I, LEE K W, et al. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses[J]. Biotechnology Letters, 2010, 32(4): 571-576. DOI: 10.1007/s10529-009-0185-0. [20] GAO C, ZHANG K, YANG G, et al. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and exogenous abscisic acid(ABA)[J]. International Journal of Molecular Sciences, 2012, 13(3): 3751-3764. DOI: 10.3390/ijms13033751. [21] 宁坤,宋鑫,李慧玉. 柽柳GF14基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 33-40. DOI: 10. 3969/j. issn.1000-2006. 2016. 02. 006. NING K, SONG X, LI H Y.Cloning and expression analysis of ThGF14 gene in Tamarix hispida[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 33-40. [22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.2001.1262. [23] 张凯敏,王玉成,杨桂燕,等. 柽柳ThPR1基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2013, 37(2):45-49. DOI: 10.3969/j.issn.1000-2006.2013.02.008. ZHANG K M, WANG Y C, YANG G Y, et al. Clone and expression analysis of ThPRl gene in Tamarix hispida[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(2): 45-49. [24] WANG Q J, SUN H, DONG Q L,et al. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants[J]. Plant Biotechnology Journal, 2016, 14(10): 1986-1997. DOI: 10.1111/pbi.12556. [25] LI X, KIM Y B, KIM Y, et al. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat[J]. Journal of Plant Physiology, 2013,170(18):1630-1636. DOI: 10.1016/j.jplph.2013.06.010. [26] HAN Y Y, LI A X, LI F, et al. Characterization of a wheat(Triticum aestivum L.)expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation[J]. Plant Physiology and Biochemistry, 2012, 54, 49-58. DOI: 10.1016/j.plaphy.2012.02.007. [27] NAKAMURA Y, TOLBERT N E. Serine: glyoxylate, alanine: glyoxylate, and glutamate: glyoxylate aminotransferase reactions in peroxisomes from spinach leaves[J]. Journal of Biological Chemistry, 1983, 258(12): 7631-7638. [28] REHFELD D W, TOLBERT N E. Aminotransferases in peroxisomes from spinach leaves[J]. Journal of Biological Chemistry, 1972, 247(15): 4803-4811. DOI: 10.1007/BF01539064. [29] HUSIC D W, HUSIC H D, TOLBERT N E, et al. The oxidative photosynthetic carbon cycle or C2 cycle[J]. Critical Reviews in Plant Sciences, 1987, 5(1): 45-100. DOI: 10.1080/07352688709382234. [30] SOMERVILLE C R, OGREN W L. Genetic modification of photorespiration[J]. Trends in Biochemical Sciences, 1982, 7(5): 171-174. DOI: 10.1016/0968-0004(82)90130-X. [31] 金怡,刘合芹,汪得凯,等. 植物光呼吸分子机制研究进展[J]. 中国农学通报, 2011, 27(3): 232-236. DOI: 1000-6850(2011)27:3<232:ZWGHXF>2.0.TX; 2-N. JIN Y, LIU H Q, WANG D K, et al. The progress of molecular mechanisms of photorespiration in plants[J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 232-236. [32] KOZAKI A, TAKEBA G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384(6609): 557-560. DOI: 10.1038/384557a0. [33] FOYER C H, NOCTOR G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications[J]. Antioxidants Redox Signaling, 2009, 11(4): 861-905. DOI: 10.1089/ars.2008.2177. [34] OSMOND C B, GRACE S C.Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis[J]. Journal of Experimental Botany, 1995: 1351-1362. DOI: 10.1093/jxb/46.special_issue.1351. [35] CHUNG E, KIM K M, HEO J E, et al. Molecular characterization of mungbean peroxisomal alanine glyoxylate aminotransferase gene induced by low temperature stress[J]. Genes Genomics, 2009, 31(1): 11-18. DOI: 10.1007/BF03191133. |
[1] | GAO Yuan, SUN Jiatong, ZHOU Chenguang, CHIANG Vincent, LI Wei, LI Shuang. Regulation of LBD12 transcription factor on wood formation in Populus trichocarpa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 29-38. |
[2] | JIA Zhanhui, JIA Xiaodong, XU Mengyang, MO Zhenghai, ZHAI Min, XUAN Jiping, ZHANG Jiyu, WANG Gang, WANG Tao, GUO Zhongren. Cloning and expression analyses of the key enzyme gene of procyanidins biosynthesis in pecan (Carya illinoinensis) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 49-57. |
[3] | WANG Zhuwen, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 31-39. |
[4] | HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming. Application of CRISPR/Cas technique in woody plant improvement [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 24-30. |
[5] | SUN Jiatong, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 15-23. |
[6] | SHI Jisen. CIRSPR: a unfulfilled journey from gene editing in ‘Blind box’ to ‘Precision targeting’ genome editing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 12-14. |
[7] | WANG Peilong, YANG Ni, ZHANG Aoran, Tangnver•Sailike , LI Shuang, GAO Caiqiu. Cloning ThPCS1 gene of Tamarix hispida to improve cadmium tolerance [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 71-78. |
[8] | MO Zhenghai, LI Fengda, SU Wenchuan, CAO Fan, PENG Fangren, LI Yongrong. Cloning and expression analysis of CiMYB46 in the graft healing process of Carya illinoinensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 156-162. |
[9] | LIU Xiaowei,YANG Xiuyan,WU Haiwen,LIU Xiaoyan,ZHU Jianfeng,ZHANG Huaxin. Transcriptome analysis of differentially expressed genes in Reaumuria soongorica seeds germination under NaCl stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 28-36. |
[10] | TIAN Jing, ZHAO Xueyuan, XIE Longsheng, QUAN Jinyi, YAO Lianmei, WANG Guodong, ZHENG Yaoqang, LIU Xuemei. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 159-166. |
[11] | YANG Guiyan, YU Lili, ZHAO Yulin, ZHAO Zhen, GAO Caiqiu. Stress tolerance analysis of a Tamarix hispida TheIF1A in Saccharomyces cerevisiae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(05): 62-66. |
[12] | GUAN Minxiao, LIU Xuemei, ZHANG Yan, LIU Ying, SUN Fengbin. Isolation and transcription expression analysis of SPL8 transcription factors gene of Betula platyphylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(03): 17-22. |
[13] | ZHANG Kaimin,WANG Yucheng, YANG Guiyan, GAO Caiqiu. Clone and expression analysis of ThPR1 gene in Tamarix hispida [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(02): 45-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||