JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3): 61-70.doi: 10.12302/j.issn.1000-2006.202103020
Previous Articles Next Articles
SHI Wenguang1(), LI Jing2, ZHANG Yuhong1,3, LEI Jingpin1, LUO Zhibin1,*()
Received:
2021-03-09
Revised:
2021-04-06
Online:
2021-05-30
Published:
2021-05-31
Contact:
LUO Zhibin
E-mail:swg0911@126.com;luozbbill@163.com
CLC Number:
SHI Wenguang, LI Jing, ZHANG Yuhong, LEI Jingpin, LUO Zhibin. A comparative study on lead tolerance and accumulation of seven poplar species[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 61-70.
Table 2
The effects of Pb stress on radial growth of the seven poplar species"
树种 species | Pb处理/ (mmol·L-1) Pb treaments | 地径/mm ground diameter | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 7 d | 14 d | 21 d | 28 d | 35 d | 42 d | |||||||||
Pc | 0 | 2.45±0.11 a | 2.63±0.10 a | 2.89±0.14 a | 3.15±0.17 a | 3.77±0.16 a | 4.09±0.26 a | 4.48±0.27 a | |||||||
8 | 2.95±0.13 b | 3.29±0.09 b | 3.55±0.09 b | 3.78±0.12 b | 4.21±0.18 b | 4.29±0.18 a | 4.39±0.25 a | ||||||||
Pd | 0 | 3.70±0.06 cd | 4.02±0.07 cd | 4.37±0.14 c | 4.87±0.10 de | 5.12±0.04 def | 5.44±0.08 cd | 5.75±0.08 de | |||||||
8 | 3.90±0.14 de | 4.21±0.20 cde | 4.51±0.16 cd | 4.84±0.15 de | 5.11±0.07 def | 5.39±0.11 cd | 5.58±0.12 cd | ||||||||
Pe | 0 | 4.76±0.14 f | 5.06±0.18 f | 5.46±0.17 e | 5.80±0.16 f | 6.14±0.18 i | 6.42±0.14 g | 6.70±0.15 g | |||||||
8 | 4.74±0.14 f | 5.01±0.11 f | 5.37±0.17 e | 5.64±0.16 f | 5.85±0.14 hi | 6.11±0.15 fg | 6.38±0.16 fg | ||||||||
Pg | 0 | 3.52±0.22 c | 3.92±0.17 cd | 4.36±0.15 c | 4.96±0.14 de | 5.40±0.21 fg | 5.71±0.18 de | 6.08±0.18 ef | |||||||
8 | 3.75±0.14 cde | 4.16±0.05 cde | 4.65±0.07 cd | 5.03±0.04 de | 5.34±0.07 fg | 5.58±0.09 de | 5.68±0.07 de | ||||||||
Pn | 0 | 3.79±0.05 cde | 4.11±0.09 cde | 4.58±0.13 cd | 4.80±0.14 de | 5.17±0.41 defg | 5.46±0.52 cde | 5.81±0.56 def | |||||||
8 | 3.73±0.04 cde | 3.86±0.08 c | 3.95±0.07 b | 4.17±0.06 c | 4.52±0.02 bc | 4.74±0.05 b | 5.01±0.04 b | ||||||||
Pp | 0 | 3.98±0.07 de | 4.34±0.10 e | 4.74±0.11 d | 5.07±0.10 e | 5.53±0.13 gh | 5.90±0.10 ef | 6.25±0.07 f | |||||||
8 | 3.87±0.08 de | 4.10±0.08 cde | 4.46±0.09 cd | 4.72±0.08 d | 4.86±0.06 cde | 5.07±0.09 bc | 5.17±0.08 bc | ||||||||
Pz | 0 | 4.05±0.03 e | 4.42±0.07 e | 4.71±0.17 cd | 5.04±0.14 de | 5.37±0.12 fg | 5.71±0.22 def | 5.97±0.20 def | |||||||
8 | 4.04±0.12 e | 4.22±0.12 de | 4.44±0.13 cd | 4.66±0.09 d | 4.72±0.05 cd | 5.03±0.06 bc | 5.17±0.05 bc |
Table 3
The total Pb amount, bio-concentration factors and translocation factors of the seven poplar species"
树种 species | Pb积累量/(mg·株-1) total Pb amount | 富集系数 BCF | 转运系数 TF | ||||
---|---|---|---|---|---|---|---|
根 roots | 木材 wood | 树皮 bark | 叶 leaves | 根 roots | 地上部分 aboveground part | ||
Pc | 0.92±0.16 a | 0.11±0.02 d | 0.06±0.01 b | 1.04±0.10 e | 2.70±0.04 b | 0.43±0.02 e | 0.16±0.01 f |
Pd | 4.20±0.45 c | 0.08±0.01 c | 0.06±0.01 b | 0.72±0.05 c | 6.70±0.26 e | 0.20±0.00 d | 0.03±0.00 ab |
Pe | 1.20±0.08 a | 0.08±0.01 bc | 0.04±0.00 a | 0.60±0.03 c | 1.73±0.06 a | 0.13±0.01 b | 0.08±0.00 e |
Pg | 1.58±0.04 a | 0.06±0.00 ab | 0.08±0.00 c | 0.89±0.03 d | 4.48±0.16 d | 0.21±0.00 d | 0.05±0.00 cd |
Pn | 2.92±0.56 b | 0.04±0.00 a | 0.03±0.00 a | 0.20±0.04 a | 3.41±0.35 c | 0.07±0.01 a | 0.02±0.01 a |
Pp | 2.59±0.27 b | 0.05±0.00 a | 0.03±0.00 a | 0.47±0.03 b | 3.95±0.03 d | 0.16±0.00 c | 0.04±0.00 bc |
Pz | 1.40±0.16 a | 0.04±0.00 a | 0.06±0.00 b | 0.22±0.01 a | 1.76±0.10 a | 0.10±0.00 a | 0.06±0.00 d |
[1] |
ZULFIQAR U, FAROOQ M, HUSSAIN S, et al. Lead toxicity in plants:impacts and remediation[J]. J Environ Manage, 2019,250:109557.DOI: 10.1016/j.jenvman.2019.109557.
doi: 10.1016/j.jenvman.2019.109557 |
[2] | 环境保护部和国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2014-04-07]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. |
[3] |
NEEDLEMAN H. Lead poisoning[J]. Annu Rev Med, 2004,55(1):209-222.DOI: 10.1146/annurev.med.55.091902.103653.
doi: 10.1146/annurev.med.55.091902.103653 |
[4] |
SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals:modifications and future perspectives[J]. Chemosphere, 2017,171:710-721.DOI: 10.1016/j.chemosphere.2016.12.116.
doi: 10.1016/j.chemosphere.2016.12.116 |
[5] |
GERHARDT K E, GERWING P D, GREENBERG B M. Opinion:taking phytoremediation from proven technology to accepted practice[J]. Plant Sci, 2017,256:170-185.DOI: 10.1016/j.plantsci.2016.11.016.
doi: 10.1016/j.plantsci.2016.11.016 |
[6] |
STOBRAWA K, LORENC-PLUCINSKA G. Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders[J]. Sci Total Environ, 2008,390(1):86-96.DOI: 10.1016/j.scitotenv.2007.09.024.
doi: 10.1016/j.scitotenv.2007.09.024 |
[7] |
DURAND T C, HAUSMAN J F, CARPIN S, et al. Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba[J]. Biol Plant, 2010,54(1):191-194.DOI: 10.1007/s10535-010-0033-z.
doi: 10.1007/s10535-010-0033-z |
[8] |
HE J, MA C, MA Y, et al. Cadmium tolerance in six poplar species[J]. Environ Sci Pollut Res Int, 2013,20(1):163-174.DOI: 10.1007/s11356-012-1008-8.
doi: 10.1007/s11356-012-1008-8 |
[9] |
SHI W G, LIU W, YU W, et al. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens[J]. J Hazard Mater, 2019,362:275-285.DOI: 10.1016/j.jhazmat.2018.09.024.
doi: 10.1016/j.jhazmat.2018.09.024 |
[10] |
SCARACIA-MUGNOZZA G E, CEULEMANS R, HEILMAN P E, et al. Production physiology and morphology of Populus species and their hybrids grown under short rotation.II.Biomass components and harvest index of hybrid and parental species clones[J]. Can J For Res, 1997,27(3):285-294.DOI: 10.1139/x96-180.
doi: 10.1139/x96-180 |
[11] | PIETROSANTI L, MATTEUCCI G, PIETRINI F, et al. Hydrological control and phytoremediation by poplar and willow clones in a contamineted industrial site in Venice lagoon [C]// KALOGERAKIS N, FAVA F, BANWART S A. Crete: Proceedings of the Forth European Bioremediation Conference, 2008. |
[12] | MCGRATH S P, DUNHAM S J, CORRELL R L. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants[M]//Phytoremediation of Contaminated Soil and Water:CRC Press, 2020: 109-128. DOI: 10.1201/9780367803148-6. |
[13] |
POLLE A, DOUGLAS C. The molecular physiology of poplars:paving the way for knowledge-based biomass production[J]. Plant Biol (Stuttg), 2010,12(2):239-241.DOI: 10.1111/j.1438-8677.2009.00318.x.
doi: 10.1111/j.1438-8677.2009.00318.x |
[14] |
HU Y, NAN Z, SU J, et al. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination:implications for phytoextraction and phytostabilization[J]. Environ Sci Pollut Res Int, 2013,20(10):7194-7203.DOI: 10.1007/s11356-013-1711-0.
doi: 10.1007/s11356-013-1711-0 |
[15] |
PIETRINI F, ZACCHINI M, IORI V, et al. Screening of poplar clones for cadmium phytoremediation using photosynjournal,biomass and cadmium content analyses[J]. Int J Phytoremediation, 2009,12(1):105-120.DOI: 10.1080/15226510902767163.
doi: 10.1080/15226510902767163 |
[16] |
MIGEON A, RICHAUD P, GUINET F, et al. Hydroponic screening of poplar for trace element tolerance and accumulation[J]. Int J Phytoremediation, 2012,14(4):350-361.DOI: 10.1080/15226514.2011.620651.
doi: 10.1080/15226514.2011.620651 |
[17] |
BENYÓ D, HORVÁTH E, NÉMETH E, et al. Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P.×canadensis[J]. J Plant Physiol, 2016,201:62-70.DOI: 10.1016/j.jplph.2016.05.025.
doi: 10.1016/j.jplph.2016.05.025 |
[18] |
AS E, TABARI KOUCHAKSARAEI M, BAHRAMIFAR N, et al. Gas exchange responses of two poplar clones (Populus euramericana (Dode) Guinier 561/41 and Populus nigra Linnaeus 63/135) to lead toxicity[J]. J For Sci, 2016,62(9):422-428.DOI: 10.17221/91/2016-jfs.
doi: 10.17221/JFS |
[19] |
HAN S H, KIM D H, LEE J C. Effects of the ectomycorrhizal fungus Pisolithus tinctorius and Cd on physiological properties and Cd uptake by hybrid poplar Populus alba × Glandulosa[J]. J Ecol Environ, 2011,34(4):393-400.DOI: 10.5141/jefb.2011.041.
doi: 10.5141/JEFB.2011.041 |
[20] |
CAO X, JIA J B, LI H, et al. Photosynjournal,water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biol (Stuttg), 2012,14(4):612-620.DOI: 10.1111/j.1438-8677.2011.00531.x.
doi: 10.1111/j.1438-8677.2011.00531.x |
[21] | HE J, QIN J, LONG L, et al. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens[J]. Physiol Plant, 2011,143(1):50-63.DOI: 10.1111/j.1399-3054.2011.01487.x. |
[22] |
ZHOU JT, WAN H X, HE J L, et al. Integration of cadmium accumulation,subcellular distribution,and physiological responses to understand cadmium tolerance in apple rootstocks[J]. Front Plant Sci, 2017,8:966.DOI: 10.3389/fpls.2017.00966.
doi: 10.3389/fpls.2017.00966 |
[23] |
WAN H, DU J, HE J, et al. Copper accumulation,subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks[J]. Tree Physiol, 2019,39(7):1215-1234.DOI: 10.1093/treephys/tpz042.
doi: 10.1093/treephys/tpz042 |
[24] |
KUMAR A, PRASAD M N V. Plant-lead interactions:transport,toxicity,tolerance,and detoxification mechanisms[J]. Ecotoxicol Environ Saf, 2018,166:401-418.DOI: 10.1016/j.ecoenv.2018.09.113.
doi: 10.1016/j.ecoenv.2018.09.113 |
[25] |
SHARMA P, DUBEY R S. Lead toxicity in plants[J]. Braz J Plant Physiol, 2005,17(1):35-52.DOI: 10.1590/s1677-04202005000100004.
doi: 10.1590/S1677-04202005000100004 |
[26] |
ALKHATIB R, MHEIDAT M, ABDO N, et al. Effect of lead on the physiological,biochemical and ultrastructural properties of Leucaena leucocephala[J]. Plant Biol, 2019,21(6):1132-1139.DOI: 10.1111/plb.13021.
doi: 10.1111/plb.v21.6 |
[27] |
PAJEVIC S, BORISEV M, NIKOLIC N, et al. Phytoremediation capacity of poplar (Populus spp.) and willow (Salix spp.) clonesin relation to photosynjournal[J]. Arch Biol Sci, 2009,61(2):239-247.DOI: 10.2298/abs0902239p.
doi: 10.2298/ABS0902239P |
[28] |
ROMANOWSKA E, WRÓBLEWSKA B, DROAK A, et al. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead[J]. Plant Physiol Biochem, 2006,44(5/6):387-394.DOI: 10.1016/j.plaphy.2006.06.003.
doi: 10.1016/j.plaphy.2006.06.003 |
[29] |
SHA S, CHENG M H, HU K J, et al. Toxic effects of Pb on Spirodela polyrhiza (L.):subcellular distribution,chemical forms,morphological and physiological disorders[J]. Ecotoxicol Environ Saf, 2019,181:146-154.DOI: 10.1016/j.ecoenv.2019.05.085.
doi: 10.1016/j.ecoenv.2019.05.085 |
[30] |
RADOJCIC REDOVNIKOVIC I, DE MARCO A, PROIETTI C, et al. Poplar response to cadmium and lead soil contamination[J]. Ecotoxicol Environ Saf, 2017,144:482-489.DOI: 10.1016/j.ecoenv.2017.06.011.
doi: 10.1016/j.ecoenv.2017.06.011 |
[31] |
SALEHI A, TABARI KOUCHAKSARAEI M, MOHAMMADI GOLTAPEH E, et al. Effect of mycorrhizal inoculation on black and white poplar in a lead-polluted soil[J]. J For Sci, 2016,62:223-228.DOI: 10.17221/23/2016-jfs.
doi: 10.17221/JFS |
[32] |
SZUBA A, KARLINSKI L, KRZESŁOWSKA M, et al. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions[J]. Plant Soil, 2017,412(1/2):253-266.DOI: 10.1007/s11104-016-3062-3.
doi: 10.1007/s11104-016-3062-3 |
[33] | CHEN L, GAO S, ZHU P, et al. Comparative study of metal resistance and accumulation of lead and zinc in two poplars[J]. Physiol Plant, 2014,151(4):390-405.DOI: 10.1111/ppl.12120. |
[34] |
DOS SANTOS UTMAZIAN M N, DE WIESHAMMER G, VEGA R, et al. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars[J]. Environ Pollut, 2007,148(1):155-165.DOI: 10.1016/j.envpol.2006.10.045.
doi: 10.1016/j.envpol.2006.10.045 |
[35] |
SHI WG, ZHOU J, LI J, et al. Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species[J]. Environ Pollut, 2021,271:116346.DOI: 10.1016/j.envpol.2020.116346.
doi: 10.1016/j.envpol.2020.116346 |
[36] |
MUTHUSARAVANAN S, SIVARAJASEKAR N, VIVEK J S, et al. Phytoremediation of heavy metals:mechanisms,methods and enhancements[J]. Environ Chem Lett, 2018,16(4):1339-1359.DOI: 10.1007/s10311-018-0762-3.
doi: 10.1007/s10311-018-0762-3 |
[37] |
BALDANTONI D, CICATELLI A, BELLINO A, et al. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements[J]. J Environ Manag, 2014,146:94-99.DOI: 10.1016/j.jenvman.2014.07.045.
doi: 10.1016/j.jenvman.2014.07.045 |
[38] |
PILIPOVIC A, ZALESNY R S, RONCEVIC S, et al. Growth,physiology,and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated,dredged river sediments[J]. J Environ Manage, 2019,239:352-365.DOI: 10.1016/j.jenvman.2019.03.072.
doi: 10.1016/j.jenvman.2019.03.072 |
[39] |
LEBRUN M, MIARD F, NANDILLON R, et al. Influence of biochar particle size and concentration on Pb and as availability in contaminated mining soil and phytoremediation potential of poplar assessed in a mesocosm experiment[J]. Water Air Soil Pollut, 2020,232(1):1-21.DOI: 10.1007/s11270-020-04942-y.
doi: 10.1007/s11270-020-04943-x |
[40] |
KOMÁREK M, TLUSTOS P, SZÁKOVÁ J, et al. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils[J]. Chemosphere, 2007,67(4):640-651.DOI: 10.1016/j.chemosphere.2006.11.010.
doi: 10.1016/j.chemosphere.2006.11.010 |
[41] |
LIPHADZI M S, KIRKHAM M B, MANKIN K R, et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm[J]. Plant Soil, 2003,257(1):171-182.DOI: 10.1023/A:1026294830323.
doi: 10.1023/A:1026294830323 |
[42] | KACALKOVA L, TLUSTOS P, SZAKOVA J. Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow, and poplar[J]. 2014. 23(3):753-761. |
[43] | MA C, CHEN Y, DING S, et al. Sulfur nutrition stimulates lead accumulation and alleviates its toxicity in Populus deltoides[J]. Tree Physiol, 2018,38(11):1724-1741.DOI: 10.1093/treephys/tpy069. |
[1] | DING Yong, LIU Xin, ZHANG Jinchi, WANG Yuhao, CHEN Meiling, LI Tao, LIU Xiaowu, ZHOU Yuexiang, SUN Lianhao, LIAO Yi. Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 90-98. |
[2] | ZHOU Youfeng, XIE Binglou, LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 169-178. |
[3] | DONG Yujie, MAO Lingfeng, ZHANG Min, LU Xudong, WU Xiuping. Relationship between aboveground biomass and environmental factors of subtropical typical evergreen broad-leaved forest in east China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 74-80. |
[4] | LI Jianxin, XU Sen, YANG Liting, CHEN Shuanglin, GUO Ziwu. Interannual effects of growth, module biomass accumulation and allocation of Polygonatum cyrtonema under Phyllostachys edulis forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 121-128. |
[5] | XIONG Yanfei, CHEN Yuefeng, MAO Zhiqiang, CAO Xinghong, YE Yuhan, ZHANG Jiankun. Phytoremediation mechanisms of air formaldehyde pollution [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 1-12. |
[6] | WANG Lulu, GENG Xingmin, HUAN Zhiqun, XU Shida, ZHAO Hui. Effects of 1-MCP pretreatment on photosynthetic characteristics and related gene expression of rhododendron seedlings under heat stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 103-113. |
[7] | HE Xiao, LEI Xiangdong, DUAN Guangshuang, FENG Qingrong, ZHANG Yiru, FENG Linyan. Modelling the effects of climate change on stand biomass growth of larch plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 120-128. |
[8] | SUN Yu, LI Fengri, XIE Longfei, DONG Lihu. Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 129-136. |
[9] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[10] | SUN Xiaowei, WANG Xingchang, SUN Huizhen, QUAN Xiankui, YANG Qingjie. Photosynthetic characteristics of dioecious Populus davidiana, Fraxinus mandshurica and Taxus cuspidata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 129-135. |
[11] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[12] | WANG Dawei, SHEN Wenxing. The carbon storage calaulation and carbon sequestration potential analysis of the main artificial arboreal forest in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 11-19. |
[13] | YUAN Jingqi, YU Zhongliang, LAN Xuehan, LI Chenghong, TIAN Nianjun, DU Fengguo. Effects of shading treatments on photosynthetic characteristics of endangered plant Thuja koraiensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 58-66. |
[14] | ZHANG Cheng, WANG Xiaoyan, WANG Xianrong, DUAN Yifan, ZHANG Min, SHI Dawei, ZHU Yue, SONG Yanfeng, CHAI Zihan, LI Lan. Photosynthesis and hormone study of male and hermaphroditic Osmanthus fragrans at different flowering stages [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 75-80. |
[15] | LI Linke, WANG Yinuo, XUE Xiao, ZHANG Wen, WU Jiaojiao, GAO Lan, TAN Xing, RONG Xingyu, DUAN Rurong, LIU Yun. Response of Cotinus coggygria photosynthesis and coloration to weather change in Chongqing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 95-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||