Cortisol content in hair of captive forest musk deer(Moschus berezovskii) and its indication

LI Dawei, HU Defu, ZHANG Tianxiang, GUO Xiaobing, SHI Minghui, JIN Weijiang, ZHANG Baofeng, LIU Shuqiang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 236-240.

PDF(1273 KB)
PDF(1273 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 236-240. DOI: 10.12302/j.issn.1000-2006.202103039

Cortisol content in hair of captive forest musk deer(Moschus berezovskii) and its indication

Author information +
History +

Abstract

【Objective】We studied the effects of the size of the musk deer farm, enclosure space, and age factors on the physiological stress of forest musk deer (Moschus berezovskii) to provide a scientific basis for the feeding and management of the deer. 【Method】In this study, hair was taken from the left thigh of 142 captive male forest musk deer from 25 musk farms in Fengxian, Shaanxi, China. Enzyme-linked immunoassay (ELISA) was used to determine the cortisol content in the hair samples and the difference in the cortisol content in the hair of deer of different age groups. Additionally, the cluster analysis of the hair cortisol content of forest musk deer and a chi-square test of the distribution of the high cortisol group and the low cortisol group of forest musk deer in different feeding environments was used to explore and evaluate the physiological affecting farmed male forest musk deer.【Result】There was no significant difference in the cortisol content in the hair of male musk deer at the ages of 3-9 years. The cluster analysis of the hair cortisol content showed that the state of physiology stress in the male musk deer could be divided into two groups: low cortisol and high cortisol. The results of the chi-square test showed that there was no significant difference in the distribution of cortisol between the two groups at different scales of musk deer farms. The high cortisol group had the highest proportion in the small circle, and the low cortisol group had the highest proportion in the large circle.【Conclusion】The results showed that the cortisol content in forest musk deer hair could effectively detect the state of physiology, which could be divided into high-sensitivity and low-sensitivity groups. Feeding space significantly affected the physiological state of musk deer and affected the proportions of highly sensitive and less sensitive individuals.

Key words

forest musk deer(Moschus berezovskii) / physiological stress / hair cortisol / feeding environment

Cite this article

Download Citations
LI Dawei , HU Defu , ZHANG Tianxiang , et al . Cortisol content in hair of captive forest musk deer(Moschus berezovskii) and its indication[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 236-240 https://doi.org/10.12302/j.issn.1000-2006.202103039

References

[1]
FISCHER C P, ROMERO L M. Chronic captivity stress in wild animals is highly species-specific[J]. Conserv Physiol, 2019, 7(1): coz093. DOI: 10.1093/conphys/coz093.
[2]
MOORE I T, LEMASTER M P, MASON R T. Behavioural and hormonal responses to capture stress in the male red-sided garter snake, Thamnophis sirtalis parietalis[J]. Anim Behav, 2000, 59(3): 529-534. DOI: 10.1006/anbe.1999.1344.
[3]
KAUFMAN B M, POULIOT A L, TIEFENBACHER S, et al. Short and long-term effects of a substantial change in cage size on individually housed, adult male rhesus monkeys (Macaca mulatta)[J]. Appl Animal Behav Sci, 2004, 88(3/4): 319-330. DOI: 10.1016/j.applanim.2004.03.012.
[4]
TEIXEIRA C P, DE AZEVEDO C S, MENDL M, et al. Revisiting translocation and reintroduction programmes: the importance of considering stress[J]. Anim Behav, 2007, 73(1): 1-13. DOI: 10.1016/j.anbehav.2006.06.002.
[5]
KLEINHAPPEL T K, JOHN E A, PIKE T W, et al. Animal welfare:a social networks perspective[J]. Sci Progress, 2016, 99(1): 68-82. DOI: 10.3184/003685016x14495640902331.
[6]
MASON G J. Species differences in responses to captivity: stress, welfare and the comparative method[J]. Trends Ecol Evol, 2010, 25(12): 713-721. DOI: 10.1016/j.tree.2010.08.011.
[7]
SAPOLSKY R M, ROMERO L M, MUNCK A U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions[J]. Endocr Rev, 2000, 21(1): 55-89. DOI: 10.1210/edrv.21.1.0389.
[8]
SHERIFF M J, DANTZER B, DELEHANTY B, et al. Measuring stress in wildlife: techniques for quantifying glucocorticoids[J]. Oecologia, 2011, 166(4): 869-887. DOI: 10.1007/s00442-011-1943-y.
[9]
LI Y M, SHI M H, ZHANG T X, et al. Dynamic changes in intestinal microbiota in young forest musk deer during weaning[J]. Peer J, 2020, 8: e8923. DOI: 10.7717/peerj.8923.
[10]
RUSSELL E, KOREN G, RIEDER M, et al. Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions[J]. Psychoneuroendocrinology, 2012, 37(5): 589-601. DOI: 10.1016/j.psyneuen.2011.09.009.
[11]
ROMERO L M, DICKENS M J, CYR N E. The reactive scope model:a new model integrating homeostasis, allostasis, and stress[J]. Horm Behav, 2009, 55(3): 375-389. DOI: 10.1016/j.yhbeh.2008.12.009.
[12]
SAPOLSKY R M. The influence of social hierarchy on primate health[J]. Science, 2005, 308(5722): 648-652. DOI: 10.1126/science.1106477.
[13]
COMIN A, ZUFFERLI V, PERIC T, et al. Hair cortisol levels determined at different body sites in the New Zealand white rabbit[J]. World Rabbit Sci, 2012, 20(3): 149-154. DOI: 10.4995/wrs.2012.1106.
[14]
CATTET M, MACBETH B J, JANZ D M, et al. Quantifying long-term stress in brown bears with the hair cortisol concentration: a biomarker that may be confounded by rapid changes in response to capture and handling[J]. Conserv Physiol, 2014, 2(1): cou026. DOI: 10.1093/conphys/cou026.
[15]
SCHUBACH K M, COOKE R F, BRANDÃO A P, et al. Impacts of stocking density on development and puberty attainment of replacement beef heifers[J]. Animal, 2017, 11(12): 2260-2267. DOI: 10.1017/s1751731117001070.
[16]
盛和林, 刘志霄. 中国麝科动物[M]. 上海: 上海科学技术出版社, 2007.
SHENG H L, LIU Z X. The musk deer in China[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2007.
[17]
何岚. 圈养林麝应激状态的非损伤性研究及应用价值[D]. 北京: 北京林业大学, 2014.
He L. Non-invasive methods using in stress assessment of captive forest musk deer and application value[D]. Beijing: Beijing Forestry University, 2014.
[18]
王毅花. 基于林麝生理应激类型的生理生态学特征研究[D]. 北京: 北京林业大学, 2016.
WANG Y H. Study on physiological and ecological characteristics of musk deer based on physiological stress types[D]. Beijing: Beijing Forestry University, 2016.
[19]
HE L, WANG W X, LI L H, et al. Effects of crowding and sex on fecal cortisol levels of captive forest musk deer[J]. Biol Res, 2014, 47: 48. DOI: 10.1186/0717-6287-47-48.
[20]
DAVENPORT M D, TIEFENBACHER S, LUTZ C K, et al. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques[J]. Gen Comp Endocrinol, 2006, 147(3): 255-261. DOI: 10.1016/j.ygcen.2006.01.005.
[21]
PHILLIPS K A, TUKAN A N, RIGODANZO A D, et al. Quantification of hair cortisol concentration in common marmosets (Callithrix jacchus) and tufted capuchins (Cebus apella)[J]. Am J Primatol, 2018, 80(7): e22879. DOI: 10.1002/ajp.22879.
[22]
李春禄, 秦冬冬, 冯晓丽, 等. 猕猴毛发皮质醇测量方法探索[J]. 动物学研究, 2009, 30(4):401-405.
LI C L, QIN D D, FENG X L, et al. A reliable procedure for measuring cortisol levels in rhesus macaque hair samples[J]. Zool Res, 2009, 30(4): 401-405.
[23]
MOBERG G P, MENCH J A. The biology of animal stress: basic principles and implications for animal welfare[M]. New York: CABI Publishing, 2000.
[24]
FOURIE N H, JOLLY C J, PHILLIPS-CONROY J E, et al. Variation of hair cortisol concentrations among wild populations of two baboon species (Papio Anubis, P. Hamadryas) and a population of their natural hybrids[J]. Primates, 2015, 56(3): 259-272. DOI: 10.1007/s10329-015-0469-z.
[25]
ROTH L S, FARESJÖ Å, THEODORSSON E, et al. Hair cortisol varies with season and life style and relates to human interactions in German shepherd dogs[J]. Sci Rep, 2016, 6: 19631. DOI: 10.1038/srep19631.
[26]
YANG S, ZHANG M S, LI Y M, et al. The effect of musk extraction procedures on the stress response of farmed forest musk deer (Moschus berezovskii)[J]. J Animal Plant Sci, 2020, 30(6): 1424-1434. DOI: 10.36899/japs.2020.6.0164.
[27]
CYR N E, MICHAEL ROMERO L. Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success[J]. Gen Comp Endocrinol, 2007, 151(1): 82-89. DOI: 10.1016/j.ygcen.2006.12.003.
[28]
MILLER G E, CHEN E, ZHOU E S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans[J]. Psychol Bull, 2007, 133(1): 25-45. DOI: 10.1037/0033-2909.133.1.25.
[29]
ROMERO L M, REED J M. Collecting baseline corticosterone samples in the field: is under 3 min good enough?[J]. Comp Biochem Physiol A Mol Integr Physio, 2005, 140(1): 73-79. DOI: 10.1016/j.cbpb.2004.11.004.
PDF(1273 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/