Genetic diversity and structure analyses of Quercus shumardii populations based on SLAF-seq technology

HE Xudong, ZHENG Jiwei, JIAO Zhongyi, DOU Quanqin, HUANG Libin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 81-87.

PDF(5855 KB)
PDF(5855 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 81-87. DOI: 10.12302/j.issn.1000-2006.202010036

Genetic diversity and structure analyses of Quercus shumardii populations based on SLAF-seq technology

Author information +
History +

Abstract

【Objective】Oaks are the most important productive and dominant species in broadleaf forests in the subtropics and temperate zones, and they play irreplaceable roles in forest ecology. As a precious and colorful broadleaf tree species, Quercus shumardii has been extensively utilized for commercial timber production and landscape planting. To provide a theoretical basis for the germplasm protection and variety selection, the genetic diversity and genetic structure of different provenances of Q. shumardii introduced from the USA were evaluated to reveal the characteristics of genetic differentiation and genetic relationships among individuals. 【Method】Thirty-five Quercus individuals were sampled, including 30 individuals from six provenances of Q. shumardii and five individuals of Q. nuttallii as an outgroup. A set of SNP markers was developed based on SLAF sequencing according to a non-reference genome protocol, of which the polymorphic SNP markers with a minor allele frequency (MAF) > 0.05 and miss rate < 0.2 were screened and used for a genotyping. Several software programs such as GenAlex, Arlequin, MEGA, Admixture and Cluster were used for genetic diversity parameter estimation, F statistics and molecular variance analysis, phylogenetic tree construction, genetic structure analysis, and principal component analysis, respectively. 【Result】Average sequencing depth of the 35 Quercus individuals was 11-fold. The values of Q30 and GC content of the seven provenances ranged from 90.24% to 95.12% and from 38.49% to 39.35%, with average values of 93% and 38.9%, respectively. After assembly, 4 256 436 SLAF tags were obtained, and 8 459 025 polymorphic SNP markers were identified, of which the average integrity and the heterozygosity ratio of SNPs was 79.29% and 14.15%, respectively. Among the six different provenances of Q. shumardii, the average effective number of alleles was 1.31, and the percentage of polymorphic loci was 49.21%. The observed and expected heterozygosity (Ho and He) ranged from 0.13 to 0.16 (mean 0.15) and 0.17 to 0.21 (mean 0.19), respectively. Average values of polymorphism information content (PIC), Shannon’s information index (I), Nei’s gene diversity (H), and inbreeding coefficient (${F_I}_S$) were 0.15, 0.34, 0.09 and 0.19, respectively. The pairwise genetic differentiation index (FST) and genetic distance among provenances of Q. shumardii ranged from 0.08 to 0.18 and from 0.15 to 0.39, respectively. The molecular variance analysis demonstrated that the differentiation among individuals contributed 84.88% of the total variation, and the remaining 15.12% was among populations. Furthermore, the genetic structure results showed that 30 individuals of Q. shumardii originated from three primitive ancestors, of which two groups contained TX and MS provenances, respectively, and the other group contained LA, MO, OH and PA provenances. The cluster analysis demonstrated that all 35 individuals were separated into two clades, i.e., the species Q. shumardii and Q. nuttallii, which belonged to the traditional taxonomy of Quercus. 【Conclusion】A relatively high level of genetic diversity and genetic differentiation was detected in the Q. shumardii population, suggesting that the superior individual tree among populations should be focused on for the variety selection.

Key words

Quercus shumardii / genetic diversity / genetic structure / SLAF-seq / SNP

Cite this article

Download Citations
HE Xudong , ZHENG Jiwei , JIAO Zhongyi , et al . Genetic diversity and structure analyses of Quercus shumardii populations based on SLAF-seq technology[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 81-87 https://doi.org/10.12302/j.issn.1000-2006.202010036

References

[1]
JOHNSON P S, SHIFLEY S R, RIGERS R. The ecology and silviculture of Oaks[M]. New York: CABI Publishing, 2001,9-10.
[2]
中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1998,215-263.
[3]
中国树木志编委会. 中国主要树种造林技术[M]. 北京: 中国农业出版社, 1978:500-515.
[4]
黄利斌, 窦全琴, 汤槿, 等. 栎树生物学特性与栽培研究综述[J]. 江苏林业科技, 2014, 41(6):43-50,54.
HUANG L B, DOU Q Q, TANG J, et al. Review for biological characteristics and cultivation of oak[J]. J Jiangsu For Sci Technol, 2014, 41(6):43-50,54. DOI: 1001-7380(2014)06-0043-08.
[5]
郝向春, 周帅, 韩丽君, 等. 不同种源辽东栎种子和幼树指标变异及相关分析[J]. 植物资源与环境学报, 2021, 30(4):1-11.
HAO X C, ZHOU S, HAN L J, et al. Variation of seed and sapling indexes of Quercus liaotungensis from different provenances and related analyses[J]. J Plant Resour Environ, 2021, 30(4):1-11. DOI: 10.3969/j.issn.1674-7895.2021.04.01.
[6]
纪雪, 姜卫兵, 魏家星, 等. 栎树的综合价值及其在城乡园林绿化中的应用开发[J]. 黑龙江农业科学, 2015(12):96-101.
JI X, JIANG W B, WEI J X, et al. Establishment of the evalutation system of landscape tree species in Heilongjiang Province[J]. Heilongjiang Agri Sci, 2015(12):96-101. DOI: 10.11942/j.issn1002-2767.2015.12.0096.
[7]
董晓昀, 黄利斌, 吕运舟, 等. 栎树栽培品种概述[J]. 江苏林业科技, 2018, 45(6):47-51.
DONG X Y, HUANG L B, LV Y Z, et al. Overview of cultivar in oak[J]. J Jiangsu For Sci Technol, 2018, 45(6):47-51. DOI: 1001-73-7380(2018)06-0047-05.
[8]
陈益泰, 孙海菁, 王树凤, 等. 5种北美栎树在我国长三角地区的引种生长表现[J]. 林业科学研究, 2013, 26(3):344-351.
CHEN Y T, SUN H J, WANG S F, et al. Growth performances of five north American oak species in Yangzi River Delta of China[J]. For Res, 2013, 26(3):344-351. DOI: 10.3969/j.issn.1001-1498.2013.03.013.
[9]
黄利斌, 李晓储, 朱惜晨, 等. 北美栎树引种研究[J]. 林业科技开发, 2005, 19(1):30-34.
HUANG L B, LI X C, ZHU X C, et al. Studies on introduction of north American oaks[J]. For Technol Dev, 2005, 19(1):30-34. DOI: 10.3969/j.issn.1000-8101.2005.01.009.
[10]
汪企明, 李晓储, 黄利斌, 等. 美国栎属种源引种、变异研究:种子及苗期生长变异[J]. 江苏林业科技, 1999, 26(1):1-6.
WANG Q M, LI X C, HUANG L B, et al. Studies on the variation of provenances and families in the genus Quercus of American:seed and seedling variation[J]. J Jiangsu For Sci Technol, 1999, 26(1):1-6.
[11]
汪企明, 李晓储, 黄利斌, 等. 美国栎属种源引种、变异研究:幼树年高生长节律和物候期的变异[J]. 江苏林业科技, 2000, 27(4):1-6.
WANG Q M, LI X C, HUANG L B, et al. Studies on the variation of provenances and families in the genus Quercus of American:variations in the annual height growth rhythm and phenological phase in two-year-old saplings[J]. J Jiangsu For Sci Technol, 2000, 27(4):1-6.
[12]
黄利斌, 杨静, 何开跃, 等. 纳塔栎和南方红栎2年生苗耐水湿性试验[J]. 东北林业大学学报, 2009, 37(5):7-9,35.
HUANG L B, YANG J, HE K Y, et al. Response of Quercus nuttallii and Quercus falcata saplings to flooding stress[J]. J Nor For Univ, 2009, 37(5):7-9,35. DOI: 10.3969/j.issn.1000-5382.2009.05.003.
[13]
黄利斌, 朱惜晨, 李晓储. 北美栎树无性繁殖试验[J]. 江苏林业科技, 2007, 34(4):1-4.
HUANG L B, ZHU X C, LI X C. Study on the cutting and grafting of north American oaks[J]. J Jiangsu For Sci Technol, 2007, 34(4):1-4 DOI: 1001-7380(2007)04-0001-04.
[14]
欧阳磊, 陈金慧, 郑仁华, 等. 杉木育种群体SSR分子标记遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2014, 38(1):21-26.
OUYANG L, CHEN J H, ZHENG R H, et al. Genetic diversity among the germplasm collection of the Chinese fir in 1st breeding population upon SSR markers[J]. J Nanjing For Univ(Nat Sci Ed), 2014, 38(1):21-26. DOI: 10.3969/j.issn.1000-2006.2014.01.004.
[15]
冯源恒, 杨章旗, 李火根, 等. 不同时期广西马尾松优良种源的遗传多样性变化趋势势[J]. 南京林业大学学报(自然科学版), 2016, 40(5):41-46.
FENG Y H, YANG Z Q, LI H G, et al. A study on changes of genetic diversity for nearly 50 years in superior provenances of Pinus massoniana in Guangxi[J]. J Nanjing For Univ(Nat Sci Ed), 2016, 40(5):41-46. DOI: 10.3969/j.issn.1000-2006.2016.05.007.
[16]
乔东亚, 王鹏, 王淑安, 等. 基于SNP 标记的紫薇遗传多样性分析析[J]. 南京林业大学学报(自然科学版), 2020, 44(4):21-28.
QIAO D Y, WANG P, WANG S A, et al. Genetic diversity analysis of Lagerstroemia germplasm resources based on SNP markers[J]. J Nanjing For Univ(Nat Sci Ed), 2020, 44(4):21-28. DOI: 10.3969/j.issn.1000-2006.202003075.
[17]
LAAKILI A, BELKADI B, MDERAOUI L, et al. Diversity and spatial genetic structure of natural Moroccan Quercus susber L. assessed by ISSR markers for conservation[J]. Physiol Mol Biol Plants, 2018, 24:643-654. DOI: 10.1007/s12298-018-0538-z.
[18]
PAKKAD G, UENO S, YOSHIMARU H. Genetic diversity and differentiation of Quercus semiserrata Roxb.in northern Thailand revealed by nuclear and chloroplast microsatellite markers[J]. Forest Ecol Manag, 2008, 255(3/4):1067-1077. DOI: 10.1016/j.foreco.2007.10.021.
[19]
MOHAMMAD-PANAH N, SHABANIAN N, KHADIVI A, et al. Genetic structure of gall oak(Quercus infectoria) characterized by nuclear and chloroplast SSR markers[J]. Tree Genet Genomes, 2017, 13:70. DOI: 10.1007/s11295-017-1146-8.
[20]
LIND J F, GAILING O. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers[J]. Tree Genet Genomes, 2013, 9:707-722. DOI: 10.1007/s11295-012-0586-4.
[21]
KHADIVI-KHUB A, SHABANIAN N, ALIKHANI L, et al. Genotypic analysis and population structure of Lebanon oak (Quercus libani G. Olivier) with molecular markers[J]. Tree Genet Genomes, 2015, 11:102. DOI: 10.1007/s11295-015-0935-1.
[22]
SHI X M, WEN Q, CAO M, et al. Genetic diversity and structure of natural Quercus variabilis population in China as revealed by microsatellites markers[J]. Forests, 2017, 8:495. DOI: 10.3390/f8120495.
[23]
李文英, 顾万春, 周世良. 蒙古栎天然群体遗传多样性的AFLP分析[J]. 林业科学, 2003, 39(5):29-36.
LI W Y, GU W C, ZHOU S L. AFLP analysis on genetic diversity Quercus mongolica populations[J]. Sci Silvae Sin, 2003, 39(5):29-36. DOI: 10.3321/j.issn:1001-7488.2003.05.005.
[24]
秦英英, 韩海荣, 康峰峰, 等. 基于SSR标记的山西省辽东栎自然居群遗传多样性分析[J]. 北京林业大学学报, 2012, 34(2):61-65.
QIN Y Y, HAN H R, KANG F F, et al. Genetic diversity in natural populations of Quercus liaotungensis in Shanxi Province based on nuclear SSR markers[J]. J Beijing For Univ, 2012, 34(2):61-65. DOI: 10.13332/j.1000-1522.2012.02.022.
[25]
程小毛, 王振章, 姜永雷, 等. 滇西北玉龙雪山不同海拔川滇高山栎遗传多样性分析[J]. 分子植物育种, 2016, 14(5):1329-1335.
CHENG X M, WANG Z Z, JIANG Y L, et al. Analysis on the genetic diversity of Quercus aquifolioides at diffe-rent altitudes[J]. Mol Plant Breed, 2016, 14(5):1329-1335. DOI: 10.13271/j.mpb.014.001329.
[26]
CAVENDER-BARES J, KOTHARI S, MEIRELES J E, et al. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S[J]. Am J Bot, 2018, 105(3):565-586. DOI: 10.1002/ajb2.1049.
[27]
HIPP A L, MANOS P S, GONZALEZ-RODRIGUEZ A, et al. Sympatric parallel diversification of major oak clades in the Ame-ricas and the origins of Mexican species diversity[J]. New Phytol, 2018, 217(1):439-452. DOI: 10.1111/nph.14773.
[28]
SUN X W, LIU D Y, ZHANG X F, et al. SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PloS one, 2013, 8(3):e58700. DOI: 10.1371/journal.pone.0058700.
[29]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 25(14):1754-1760. DOI: 10.1093/bioinformatics/btp324.
[30]
MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20:1297-1303. DOI: 10.1101/gr.107524.110.
[31]
LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079. DOI: 10.1093/bioinformatics/btp352.
[32]
PEAKALL R, SMOUSE P E. Genalex 6: genetic analysis in Excel: population genetic software for teaching and research[J]. Mol Ecol, 2012, 6(1):288-295. DOI: 10.1111/j.1471-8286.2005.01155.x.
[33]
EXCOFFIER L, LAVAL G, SCHNEIDER S. Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evol Bioinform, 2005, 1:47-50. DOI: 10.1177/117693430500100003.
[34]
ALEXANDER D H, LANGE K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation[J]. BMC Bioinformatics, 2011, 12:246. DOI: 10.1186/1471-2105-12-246.
[35]
宋志姣, 杨合宇, 翁启杰, 等. 细叶桉群体的遗传多样性和受选择位点[J]. 林业科学, 2016, 52(9):39-47.
SONG Z J, YANG H Y, WENG Q J, et al. Genetic diversity and selective loci in Eucalyptus tereticornis populations[J]. Sci Silvae Sin, 2016, 52(9):39-47. DOI: 10.11707/j.1001-7488.20160905.
[36]
杨汉波, 张蕊, 王帮顺, 等. 木荷优树无性系种质SSR标记的遗传多样性分析[J]. 林业科学, 2017, 53(5):43-53.
YANG H B, ZHANG R, WANG B S, et al. Analysis of genetic diversity in Schima superba plus tree germplasms by SSR markers[J]. Sci Silvae Sin, 2017, 53(5):43-53. DOI: 10.11707/j.1001-7488.20170506.
[37]
SINGH M, CHABANE K, VALKOUN J, et al. Optimum sample size for estimating gene diversity in wild wheat using AFLP mar-kers[J]. Genet Resour Crop Evol, 2006, 53 (1):23-33. DOI: 10.1007/s10722-004-0597-6.
[38]
张杰, 吴迪, 汪春蕾, 等. 应用ISSR-PCR分析蒙古栎种群的遗传多样性[J]. 生物多样性, 2007, 15(3):292-299.
ZHANG J, WU D, WANG C L, et al. Genetic diversity analysis of Quercus mongolica populations with Inter-Simple Sequence Repeats (ISSR) technique[J]. Biodivers Sci, 2007, 15(3):292-299. DOI: 10.1360/biodiv.060133.
[39]
XIA W, LUO T T, ZHANG W, et al. Development of high-density SNP markers and their application in evaluating genetic diversity and population structure in Elaeis guineensis[J]. Front Plant Sci, 2019, 10: 130. DOI: 10.3389/fpls.2019.00130.
[40]
LYU Y Z, DONG X Y, HUANG L B, et al. Uncovers the genetic diversity and adaptation of Chinese elm (Ulmus parvifolia) in eastern China[J]. Forests, 2020, 11:80. DOI: 10.3390/f11010080.
[41]
WRIGHT S. The interpretation of population structure by F-statistics with special regard to system of mating[J]. Evolution, 1965, 19:395-420. DOI: 10.1111/j.1558-5646.1965.tb01731.x.
PDF(5855 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/