[1] |
徐姗姗, 刘应安, 徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2):23-28.
|
|
XU S S, LIU Y A, XU S. Wood defects recognition based on the convolutional neural network[J]. J Shandong Univ (Eng Sci), 2013, 43(2):23-28.
|
[2] |
徐辛颖. 面向杂草识别的K近邻算法研究[D]. 哈尔滨: 东北农业大学, 2013.
|
|
XU X Y. Study on K-nearest neighbor algorithm orentied to weed identification[D]. Harbin: Northeast Agricultural University, 2013.
|
[3] |
杨红鑫, 杨绪兵, 张福全, 等. 半监督平面聚类算法设计[J]. 南京大学学报(自然科学), 2020, 56(1):9-18.
|
|
YANG H X, YANG X B, ZHANG F Q, et al. Semi-supervised plane clustering algorithm[J]. J Nanjing Univ (Nat Sci), 2020, 56(1):9-18.DOI:10.13232/j.cnki.jnju.2020.01.002.
|
[4] |
杨红鑫, 杨绪兵, 寇振宇, 等. 基于L1范数的K平面聚类算法设计[J]. 南京航空航天大学学报, 2019, 51(5):681-686.
|
|
YANG H X, YANG X B, KOU Z Y, et al. K plane clustering algorithm based on L1 norm[J]. J Nanjing Univ Aeronaut Astronaut, 2019, 51(5):681-686.DOI:10.16356/j.1005-2615.2019.05.014.
|
[5] |
孙娅彬. 基于支持向量机的纹理图像分类算法[J]. 计算机仿真, 2012, 29(5):287-290.
|
|
SUN Y B. Texture image classification algorithm based on support vector machine[J]. Comput Simul, 2012, 29(5):287-290.DOI:10.3969/j.issn.1006-9348.2012.05.070.
|
[6] |
黄昕, 张良培, 李平湘. 基于小波的高分辨率遥感影像纹理分类方法研究[J]. 武汉大学学报·信息科学版, 2006, 31(1):66-69.
|
|
HUANG X, ZHANG L P, LI P X. Methods for classification of the high spatial resolution remotely sensed images based on wavelet transform[J]. Geomat Inf Sci Wuhan Univ, 2006, 31(1):66-69.DOI:10.3969/j.issn.1671-8860.2006.01.018.
|
[7] |
李政浩. 基于BP神经网络的图像粗分类[J]. 科技传播, 2019, 11(19):78-79.
|
|
LI Z H. Rough image classification based on BP neural network[J]. Public Commun Sci Technol, 2019, 11(19):78-79.DOI:10.16607/j.cnki.1674-6708.2019.19.042.
|
[8] |
杨绪兵, 葛彦齐, 张福全, 等. 基于矩阵模式的林火图像半监督学习算法[J]. 图学学报, 2019, 40(5):835-842.
|
|
YANG X B, GE Y Q, ZHANG F Q, et al. Semi-supervised algorithm for forest fire recognition based on matrix pattern[J]. J Graph, 2019, 40(5):835-842.DOI:10.11996/JG.j.2095-302X.2019050835.
|
[9] |
贾坤, 姚云军, 魏香琴, 等. 植被覆盖度遥感估算研究进展[J]. 地球科学进展, 2013, 28(7):774-782.
|
|
JIA K, YAO Y J, WEI X Q, et al. A review on fractional vegetation cover estimation using remote sensing[J]. Adv Earth Sci, 2013, 28(7):774-782.
|
[10] |
黄昌狄, 徐芳. 基于真彩色高分辨遥感影像稀疏植被覆盖检测[J]. 测绘地理信息, 2016, 41(5):42-46,50.
|
|
HUANG C D, XU F. Extraction of sparse vegetation based on true color high resolution remote sensing image[J]. J Geomat, 2016, 41(5):42-46,50.DOI:10.14188/j.2095-6045.2016.05.010.
|
[11] |
陈斌, 王宏志, 徐新良, 等. 深度学习GoogleNet模型支持下的中分辨率遥感影像自动分类[J]. 测绘通报, 2019(6):29-33,40.
|
|
CHEN B, WANG H Z, XU X L, et al. The classification by medium resolution remote sensing images based on deep learning algorithm of GoogleNet model[J]. Bull Surv Mapp, 2019(6):29-33,40.DOI:10.13474/j.cnki.11-2246.2019.0179.
|
[12] |
王健. 深度学习算法在山区植被分类中的应用[J]. 价值工程, 2019, 38(4):161-163.
|
|
WANG J. Application of deep learning algorithm in mountain vegetation classification[J]. Value Eng, 2019, 38(4):161-163.DOI:10.14018/j.cnki.cn13-1085/n.2019.04.048.
|
[13] |
杨朦朦, 汪汇兵, 欧阳斯达, 等. 基于双树复小波分解的BP神经网络遥感影像分类[J]. 遥感技术与应用, 2018, 33(2):313-320.
|
|
YANG M M, WANG H B, OUYANG S D, et al. BP neural network classification of remote sensing images based on DT-CWT decomposition[J]. Remote Sens Technol Appl, 2018, 33(2):313-320.DOI:10.11873/j.issn.1004-0323.2018.2.0313.
|
[14] |
刘祖瑾, 杨玲, 刘祖涵, 等. 一种结合深度置信网络与最优尺度的植被提取方法[J]. 激光与光电子学进展, 2018, 55(2):158-167.
|
|
LIU Z J, YANG L, LIU Z H, et al. Method of vegetation extraction based on deep belief network and optimal scale[J]. Laser Optoelectron Prog, 2018, 55(2):158-167.DOI:10.3788/LOP55.021001.
|
[15] |
马凯, 梁敏. 基于BP神经网络高光谱图像分类研究[J]. 测绘与空间地理信息, 2017, 40(5):118-121.
|
|
MA K, LIANG M. Studies on classification of hyperspectral image based on BP neural network[J]. Geomat Spatial Inf Technol, 2017, 40(5):118-121.
|
[16] |
陈冠宇, 李向, 王岭玲. 基于大数据的遥感图像植被识别方法[J]. 地质科技情报, 2016, 35(3):204-209.
|
|
CHEN G Y, LI X, WANG L L. Identification and classification of remote sensing image of vegetation based on big data[J]. Geol Sci Technol Inf, 2016, 35(3):204-209.
|
[17] |
李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9):2508-2515,2565.
|
|
LI Y D, HAO Z B, LEI H. Survey of convolutional neural network[J]. J Comput Appl, 2016, 36(9):2508-2515,2565.DOI:10.11772/j.issn.1001-9081.2016.09.2508.
|
[18] |
刘忠伟, 戚大伟. 基于卷积神经网络的树种识别研究[J]. 森林工程, 2020, 36(1):33-38.
|
|
LIU Z W, QI D W. Study on tree species identification based on convolution neural network[J]. Forest Engineering, 2020, 36(1): 33-38.
|
[19] |
杨念聪, 任琼, 张成喆, 等. 基于卷积神经网络的图像特征识别研究[J]. 信息与电脑, 2017(14):62-64.
|
|
YANG N C, REN Q, ZHANG C Z. Research on image feature recognition based on convolution neural network[J]. China Comput Commun, 2017(14): 62-64.
|
[20] |
谭涛. 基于卷积神经网络的随机梯度下降优化算法研究[D]. 重庆: 西南大学, 2021.
|
|
TAN T. The optimization algorithm research of stochastic gradient descent based on convolutional neural network[D]. Chongqing: Southwest University, 2021.DOI:10.27684/d.cnki.gxndx.2020.002742..
|
[21] |
杨观赐, 杨静, 李少波, 等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版), 2018, 46(7):122-127.
|
|
YANG G C, YANG J, LI S B, et al. Modified CNN algorithm based on Dropout and ADAM optimizer[J]. Huazhong Univ of Sci & Tech(Natural Science Edition), 2018, 46(7):122-127.DOI:10.13245/j.hust.180723.
|
[22] |
郭敏钢, 宫鹤. AlexNet改进及优化方法的研究[J]. 计算机工程与应用, 2020, 56(20):124-131.
|
|
GUO M G, GONG H. Research on AlexNet improvement and optimization method[J]. Comput Eng Appl, 2020, 56(20):124-131.
|