JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4): 95-101.doi: 10.12302/j.issn.1000-2006.202107029
Previous Articles Next Articles
LI Dandan1,2,3(), WENG Qijie1, GAN Siming1,3, ZHOU Changpin1, HUANG Shineng1, LI Mei1,*()
Received:
2021-07-20
Revised:
2021-11-29
Online:
2022-07-30
Published:
2022-08-01
Contact:
LI Mei
E-mail:1819637443@qq.com;limei3043@caf.ac.cn
CLC Number:
LI Dandan, WENG Qijie, GAN Siming, ZHOU Changpin, HUANG Shineng, LI Mei. Identification of full-sib seedlings from an open-pollinated family of Archidendron clypearia based on EST-SSR markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 95-101.
Table 1
Fifteen EST-SSR markers included in this study and their polymorphism parameters"
序号 No. | EST-SSR标记 EST-SSR marker | 等位片段 范围/bp ASR | Na | Ne | Ho | He | 多态性 信息量 PIC |
---|---|---|---|---|---|---|---|
1 | ARCeSSR006 | 190~196 | 4 | 1.220 | 0.191 | 0.185 | 0.622 |
2 | ARCeSSR075 | 156~162 | 4 | 1.991 | 0.692 | 0.498 | 0.712 |
3 | ARCeSSR095 | 125~149 | 12 | 2.848 | 0.657 | 0.649 | 0.885 |
4 | ARCeSSR141 | 167~175 | 5 | 3.318 | 0.823 | 0.699 | 0.807 |
5 | ARCeSSR266 | 143~149 | 4 | 2.214 | 0.733 | 0.529 | 0.758 |
6 | ARCeSSR277 | 195~201 | 4 | 1.811 | 0.554 | 0.448 | 0.753 |
7 | ARCeSSR288 | 106~118 | 4 | 1.780 | 0.629 | 0.438 | 0.577 |
8 | ARCeSSR304 | 125~149 | 7 | 2.047 | 0.742 | 0.512 | 0.859 |
9 | ARCeSSR366 | 166~181 | 6 | 3.037 | 0.667 | 0.671 | 0.762 |
10 | ARCeSSR425 | 127~145 | 10 | 2.235 | 0.523 | 0.553 | 0.812 |
11 | ARCeSSR448 | 288~297 | 4 | 1.908 | 0.445 | 0.476 | 0.681 |
12 | ARCeSSR464 | 197~207 | 6 | 1.983 | 0.431 | 0.496 | 0.619 |
13 | ARCeSSR474 | 114~135 | 6 | 2.225 | 0.482 | 0.551 | 0.749 |
14 | ARCeSSR649 | 282~288 | 4 | 2.084 | 0.470 | 0.520 | 0.624 |
15 | ARCeSSR665 | 177~199 | 9 | 2.856 | 0.720 | 0.650 | 0.826 |
平均值±标准差mean±SD | 5.9±2.5 | 2.237±0.5 | 0.584±0.158 | 0.525±0.120 | 0.736±0.091 |
Table 2
Paternal parents, their sib numbers and full-sib family derived heterozygosity"
序号 No. | 父本 paternal parent | 子代数量(占比/%) number of sibs(proportion) | 亲本距离/m parental distance | Ho | He | 父本概率对数值 LOD |
---|---|---|---|---|---|---|
1 | ELS30 | 184 (21.5) | 50.0 | 0.584 | 0.484 | 0.015~8.608 |
2 | ELS32 | 139 (16.2) | 10.0 | 0.502 | 0.417 | 0.034~6.440 |
3 | ELS35 | 122 (14.2) | 100.0 | 0.693 | 0.530 | 0.229~19.952 |
4 | ELS24 | 55 (6.4) | 111.8 | 0.595 | 0.485 | 0.003~14.193 |
5 | ELS33 | 53 (6.2) | 35.0 | 0.648 | 0.517 | 0.121~10.488 |
6 | ELS25 | 43 (5.0) | 90.1 | 0.693 | 0.544 | 0.213~15.801 |
7 | ELS34 | 36 (4.2) | 50.0 | 0.646 | 0.518 | 0.008~14.376 |
8 | ELS14 | 31 (3.6) | 373.0 | 0.533 | 0.447 | 0.004~4.853 |
9 | ELS29 | 29 (3.4) | 55.9 | 0.561 | 0.445 | 1.243~16.487 |
10 | ELS27 | 26 (3.0) | 78.1 | 0.635 | 0.503 | 0.148~14.826 |
其他others | 24株 | 139 (16.2) | 70.7~559.1 | 0.467~0.757 | 0.233~0.539 | 0.008~15.826 |
合计total | 34株 | 857 |
Table 3
The χ2 test for EST-SSR marker segregation within each of the top ten full-sib families"
序号 No. | 标记 marker | ELS30 | ELS32 | ELS35 | ELS24 | ELS33 | ELS25 | ELS34 | ELS14 | ELS29 | ELS27 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ARCeSSR141 | 164.6*** | 64.9*** | 110.3*** | 55.0*** | 28.7*** | 28.5*** | 28.4*** | 9.4** | 25.2*** | 7.5** |
2 | ARCeSSR266 | 40.2*** | 62.2*** | 117.0*** | — | 25.8*** | 17.0*** | 7.1*** | 0.8 | — | 7.5*** |
3 | ARCeSSR277 | 5.3** | 0.3 | — | 46.3*** | — | 19.6*** | 36.0*** | 3.9 | — | 2.0 |
4 | ARCeSSR304 | 67.1*** | 44.7*** | 122.0*** | 2.8 | 18.3*** | 15.3*** | 9.1** | 17.2*** | 20.6** | 3.2 |
5 | ARCeSSR665 | 68.4*** | 6.4* | 68.7*** | 18.2*** | 26.4*** | 38.1*** | 12.7*** | 12.9*** | 5.1 | 26.0*** |
6 | ARCeSSR425 | 55.4*** | 9.4** | 1.0 | 1.0 | 9.0** | 11.9*** | 5.4** | 1.2 | 2.3 | 7.5** |
7 | ARCeSSR464 | 3.9 | 4.5** | 31.6*** | 0.7 | 7.1* | 4.00 | 7.1*** | 1.7 | 2.3 | 0.7 |
8 | ARCeSSR006 | — | - | — | - | — | 5.2** | 1.0 | — | 2.8 | - |
序号 No. | 标记 marker | ELS30 | ELS32 | ELS35 | ELS24 | ELS33 | ELS25 | ELS34 | ELS14 | ELS29 | ELS27 |
9 | ARCeSSR095 | 43.3*** | 3.0 | 51.3*** | 20.6*** | 4.2 | 21.8*** | 4.2 | 4.4 | 5.4 | 22.2*** |
10 | ARCeSSR075 | 151.4*** | — | 117.0*** | 17.3*** | 20.5*** | 12.3*** | 21.8*** | 3.3 | 0.3 | 3.9 |
11 | ARCeSSR649 | 5.9 | 21.4*** | 0.0 | 8.8** | 7.9* | 0.6 | 8.0** | 1.1 | 1.3 | 1.4 |
12 | ARCeSSR288 | 56.6*** | 0.6 | 44.9*** | 19.0*** | 15.1*** | 16.4*** | 0.4 | 12.5*** | 4.2 | 4.9 |
13 | ARCeSSR366 | 102.5*** | 51.0*** | 36.8*** | 18.3*** | 41.7*** | 33.6*** | 11.3*** | 8.9* | 0.3 | 14.4*** |
14 | ARCeSSR448 | 0.2 | 0.0 | 1.6 | 2.6 | 6.3 | 0.1 | 12.2*** | 0.4 | 4.5 | 1.0 |
15 | ARCeSSR474 | 21.6*** | 14.2*** | 39.5*** | 6.6** | 5.0* | 14.4*** | 3.7 | 0.3 | 4.9* | 0.2 |
偏分离标记数 No. loci distorted | 11 | 9 | 10 | 9 | 11 | 12 | 11 | 5 | 3 | 6 |
[1] | WU D L, NIELSEN I C. Tribe Ingeae[M]// XU L, CHEN D, ZHU X, et al. Fabaceae (Leguminosae), Flora of China. Vol. 10. Beijing: Science Press, 2010: 60-71. |
[2] | 刘莉莹, 康洁, 陈若芸. 猴耳环属植物化学成分和药理作用研究进展[J]. 中草药, 2013, 44(18):2623-2629. |
LIU L Y, KANG J, CHEN R Y. Research progress in chemical constituents and pharmacological activities of plants in Pithecellobium Mart[J]. Acupunct Res, 2013, 44(18):2623-2629.DOI:10.7501/j.issn.0253-2670.2013.18.026. | |
[3] | 彭亮, 李诒光, 陈杰, 等. 我国猴耳环属植物药理作用及临床应用研究进展[J]. 江西中医药大学学报, 2015, 27(6):117-120. |
PENG L, LI Y G, CHEN J, et al. The research progress of pharmacological action and clinical application about the Pithecellobium (Mart.) genus in China[J]. J Jiangxi Univ Tradit Chin Med, 2015, 27(6):117-120. | |
[4] | 李梅, 黄世能, 陈祖旭, 等. 药用乔木树种猴耳环研究现状及开发利用前景[J]. 林业科学, 2018, 54(4):142-154. |
LI M, HUANG S N, CHEN Z X, et al. The research status and utilization prospect of medicinal tree species of Archidendron clypearia[J]. Sci Silvae Sin, 2018, 54(4):142-154.DOI:10.11707/j.1001-7488.20180417. | |
[5] | WANG Y X, HAN F Y, DUAN Z K, et al. Phenolics from Archidendron clypearia (Jack) I.C.Nielsen protect SH-SY5Y cells against H2O2-induced oxidative stress[J]. Phytochemistry, 2020, 176:112414.DOI:10.1016/j.phytochem.2020.112414. |
[6] | 马星宇, 李梅, 金文云, 等. 猴耳环天然更新特性[J]. 植物研究, 2017, 37(5):761-767. |
MA X Y, LI M, JIN W Y, et al. Natural regeneration characteristics of Archidendron clypearia[J]. Bull Bot Res, 2017, 37(5):761-767.DOI:10.7525/j.issn.1673-5102.2017.05.017. | |
[7] | 童春发. 林木遗传图谱构建和QTL定位的统计方法[D]. 南京: 南京林业大学, 2003. |
TONG C F. Statistical methods for constructing genetic linkage maps and mapping QTLs in forest trees[D]. Nanjing: Nanjing Forestry University, 2003. | |
[8] | 周文才, 侯静, 郭炜, 等. 基于SSR标记的美洲黑杨杂交子代的鉴定[J]. 南京林业大学学报(自然科学版), 2015, 39(3):45-49. |
ZHOU W C, HOU J, GUO W, et al. Identification of the true hybrids for Populus deltoides by using SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(3):45-49.DOI:10.3969/j.issn.1000-2006.2015.03.009. | |
[9] | GRATTAPAGLIA D, RIBEIRO V J, REZENDE G D S P. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus[J]. Theor Appl Genet, 2004, 109(1):192-199.DOI:10.1007/s00122-004-1617-9. |
[10] | 李新军, 黄敏仁, 潘惠新, 等. 林木基因组中的微卫星(SSR)及其应用[J]. 南京林业大学学报, 1999, 23(5):64-69. |
LI X J, HUANG M R, PAN H X, et al. Microsatellite markers and appication in the forestry genome[J]. J Nanjing For Univ, 1999, 23(5):64-69. | |
[11] | JONES A G, SMALL C M, PACZOLT K A, et al. A practical guide to methods of parentage analysis[J]. Mol Ecol Resour, 2010, 10(1):6-30.DOI:10.1111/j.1755-0998.2009.02778.x. |
[12] | ASHLEY M V. Plant parentage,pollination,and dispersal: how DNA microsatellites have altered the landscape[J]. Crit Rev Plant Sci, 2010, 29(3):148-161.DOI:10.1080/07352689.2010.481167. |
[13] | 陈兴彬, 徐海宁, 肖复明, 等. 陈山红心杉1.5代种子园遗传多样性和子代父本分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3):87-92. |
CHEN X B, XU H N, XIAO F M, et al. Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(3):87-92.DOI:10.12302/j.issn.1000-2006.202005006. | |
[14] | CARNEIRO F S, LACERDA A E B, LEMES M R, et al. Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L.(Leguminosae) in the Eastern Brazilian Amazon as revealed by microsatellite analysis[J]. For Ecol Manag, 2011, 262(9):1758-1765.DOI:10.1016/j.foreco.2011.07.023. |
[15] | MANOEL R O, ALVES P F, DOURADO C L, et al. Contemporary pollen flow,mating patterns and effective population size inferred from paternity analysis in a small fragmented population of the Neotropical tree Copaifera langsdorffii Desf.(Leguminosae-Caesalpinioideae)[J]. Conserv Genet, 2012, 13(3):613-623.DOI:10.1007/s10592-011-0311-0. |
[16] | LI D D, LI M, LI F G, et al. Transcriptome-derived microsatellite markers for population diversity analysis in Archidendron clypearia (Jack) I.C.Nielsen[J]. Mol Biol Rep, 2021, 48(12):8255-8260.DOI:10.1007/s11033-021-06773-4. |
[17] | PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel.Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19):2537-2539.DOI:10.1093/bioinformatics/bts460. |
[18] | KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Mol Ecol, 2007, 16(5):1099-1106.DOI:10.1111/j.1365-294X.2007.03089.x. |
[19] | VAN OOIJEN J W. JoinMap® 4: Software for the calculation of genetic linkage maps in experimental populations[M]. Wageningen: Kyazma BV, 2006. |
[20] | XIE N, CHEN L N, DONG Y R, et al. Mixed mating system and variable mating patterns in tropical woody bamboos[J]. BMC Plant Biol, 2019, 19(1):418.DOI:10.1186/s12870-019-2024-3. |
[21] | 刘本立, 李霓, 贾凌云, 等. 黑河上游灌丛建群种中国沙棘自由授粉子代父本分析和花粉流[J]. 植物科学学报, 2019, 37(2):164-170. |
LIU B L, LI N, JIA L Y, et al. Paternity analysis and pollen flow for open-pollination progenies of Hippophae rhamnoides ssp.sinensis Rousi,a constructive species of shrub from the upper reaches of Heihe River[J]. Plant Sci J, 2019, 37(2):164-170.DOI:10.11913/PSJ.2095-0837.2019.20164. | |
[22] | 谭小梅, 周志春, 金国庆, 等. 马尾松二代无性系种子园子代父本分析及花粉散布[J]. 植物生态学报, 2011, 35(9):937-945. |
TAN X M, ZHOU Z C, JIN G Q, et al. Paternity analysis and pollen dispersal for the second generation clonal seed orchard of Pinus massoniana[J]. Chin J Plant Ecol, 2011, 35(9):937-945.DOI:10.3724/SP.J.1258.2011.00937. | |
[23] | CHEN X B, SUN X M, DONG L M, et al. Mating patterns and pollen dispersal in a Japanese larch (Larix kaempferi) clonal seed orchard: a case study[J]. Sci China Life Sci, 2018, 61(9):1011-1023.DOI:10.1007/s11427-018-9305-7. |
[24] | SHAW D V, BROWN A H D. Optimum number of marker loci for estimating outcrossing in plant populations[J]. Theor Appl Genet, 1982, 61(4):321-325.DOI:10.1007/BF00272848. |
[25] | MORIYA S, IWANAMI H, OKADA K, et al. A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers[J]. Euphytica, 2011, 177(1):135-150.DOI:10.1007/s10681-010-0295-8. |
[26] | WHITEHEAD D R. Wind pollination: some ecological and evolutionary perspectives[M]// REAL L. Pollination biology. Orlando: Academic Press, 1983: 97-108. |
[27] | 王哲. 植物杂交后代中基因偏分离的产生原因及其进化意义[J]. 遗传, 2016, 38(9):801-810. |
WANG Z. Distorted segregation in plant hybrids and its implication for evolution[J]. Hereditas, 2016, 38(9):801-810.DOI:10.16288/j.yczz.16-084. | |
[28] | CHARLESWORTH B. Driving genes and chromosomes[J]. Nature, 1988, 332(6163):394-395.DOI:10.1038/332394a0. |
[29] | HACKETT C A, BROADFOOT L B. Effects of genotyping errors,missing values and segregation distortion in molecular marker data on the construction of linkage maps[J]. Heredity, 2003, 90(1):33-38.DOI:10.1038/sj.hdy.6800173. |
[1] | CHEN Xingbin, XU Haining, XIAO Fuming, SUN Shiwu, LOU Yongfeng, ZOU Yuanxi, XU Xiaoqiang. Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 87-92. |
[2] | PAN Yanyan, XU Guiyou, DONG Lihu, WANG Chenglu,LIANG Deyang,ZHAO Xiyang . Genetic variations of seedling growth traits among full-sib families of Larix kaempferi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 14-22. |
[3] | ZHAO Fencheng,GUO Wenbing,LIN Changming,LI Fuming, WU Huishan, ZHONG Suiying,LI Yiliang,SITU Ronggui, LIAO Fangyan. Effects of different inbreeding levels on seed characteristics and growth of slash pine [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 9-17. |
[4] | TONG Chun-fa. Statistical Methods for Constructing Genetic Linkage Maps and Mapping QTLs in Forest Trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2004, 28(01): 109-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||