JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6): 146-156.doi: 10.12302/j.issn.1000-2006.202206012
Special Issue: 南京林业大学120周年校庆特刊
Previous Articles Next Articles
ZHANG Jinchi(), LI Chong(), JIA Zhaohui, LIU Xin, MENG Miaojing
Received:
2022-06-09
Revised:
2022-07-17
Online:
2022-11-30
Published:
2022-11-24
CLC Number:
ZHANG Jinchi, LI Chong, JIA Zhaohui, LIU Xin, MENG Miaojing. Application of functional microorganisms in ecological restoration of abandoned mines[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 146-156.
Table 1
Techniques for mine ecological restoration"
工程措施 engineering measure | 常见技术措施 common technical measure | 类别 type |
---|---|---|
地质安全隐患清除 geological safety hazards remove | 危险岩体清除、加固措施[ | 物理修复 |
采空区注浆充填、开挖回填措施[ | 物理修复 | |
锚固、挂网、格构等护坡措施[ | 物理修复 | |
地貌重塑 landform reshaping | 削坡、台阶再造、采坑,塌陷地回填平整、塌陷地,坡面整形等修整工程措施[ | 物理修复 |
截排水沟等排水工程措施[ | 物理修复 | |
硬面道路,建筑物拆除措施[ | 物理修复 | |
土壤重构 soil reconstruction | 表土回填措施[ | 物理修复 |
客土喷播措施[ | 物理修复 | |
活性炭、沸石、褐煤等材料吸附重金属的措施[ | 物理修复 | |
无机改良剂缓冲pH的措施[ | 物理修复 | |
水泥、塑料板等隔离材料减少污染物扩散的措施[ | 物理修复 | |
石灰石、碳酸钠等物质缓冲pH的措施[ | 化学修复 | |
有机改良剂降低重金属生物有效性和迁移性的措施[ | 化学修复 | |
土壤淋洗措施[ | 化学修复 | |
电动力措施[ | 化学修复 | |
植物提取、稳定和挥发污染物措施[ | 生物修复 | |
蚯蚓添加钝化重金属,增强重金属利用度的措施[ | 生物修复 | |
肥料添加、原地沤肥等土壤肥力改良措施[ | 生物修复 | |
微生物菌剂添加等土壤活力改良措施[ | 生物修复 |
[1] | SONTER L J, DADE M C, WATSON J E M, et al. Renewable energy production will exacerbate mining threats to biodiversity[J]. Nat Commun, 2020, 11:4174.DOI:10.1038/s41467-020-17928-5. |
[2] | 赵洋, 鞠美庭, 沈镭. 我国矿产资源安全现状及对策[J]. 资源与产业, 2011, 13(6):79-83. |
ZHAO Y, JU M T, SHEN L. Situation and approaches to China’s ore resources security[J]. Resour & Ind, 2011, 13(6):79-83.DOI:10.13776/j.cnki.resourcesindustries.2011.06.001. | |
[3] | 张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21):7921-7930. |
ZHANG J D, XI F R. Study on ecological restoration of abandoned mines in China[J]. Acta Ecol Sin, 2020, 40(21):7921-7930.DOI:10.5846/stxb201908301799. | |
[4] | 程睿. 露采金属矿山采坑境界面生态修复技术研究[J]. 湖南生态科学学报, 2022, 9(1):50-57. |
CHENG R. Study on ecological restoration technology of stope boundary interface in open pit metal mines[J]. J Hunan Ecol Sci, 2022, 9(1):50-57.DOI:10.3969/j.issn.2095-7300.2022.01.007. | |
[5] | SALOM A T, KIVINEN S. Closed and abandoned mines in Namibia:a critical review of environmental impacts and constraints to rehabilitation[J]. S Afr N Geogr J, 2020, 102(3):389-405.DOI:10.1080/03736245.2019.1698450. |
[6] | BRADSHAW A. Restoration of mined lands: using natural processes[J]. Ecol Eng, 1997, 8(4):255-269.DOI:10.1016/S0925-8574(97)00022-0. |
[7] | YANG Y J, TANG J J, ZHANG Y Y, et al. Reforestation improves vegetation coverage and biomass,but not spatial structure,on semiarid mine dumps[J]. Ecol Eng, 2022, 175:106508.DOI:10.1016/j.ecoleng.2021.106508. |
[8] | 自然资源部. 矿山生态修复技术规范:TD/T 1070.1-2022[S]. 北京: 中华人民共和国自然资源部,2022-11-01. |
[9] | THAVAMANI P, SAMKUMAR R A, SATHEESH V, et al. Microbes from mined sites: harnessing their potential for reclamation of derelict mine sites[J]. Environ Pollut, 2017, 230:495-505.DOI:10.1016/j.envpol.2017.06.056. |
[10] | 李长富. 现代矿山开采规模优化及综合工艺研究[J]. 世界有色金属, 2018(4):74-75. |
LI C F. Optimization of modern mining scale and research on comprehensive technology[J]. World Nonferrous Met, 2018(4):74-75. | |
[11] | 吴昊, 李在永, 张洪泽. 透视我国非煤矿山事故隐患:综合治理尾矿库与矿山安全隐患[J]. 科技创新导报, 2011, 8(14):61. |
WU H, LI Z Y, ZHANG H Z. Perspective on the hidden dangers of non-coal mine accidents in China: comprehensive treatment of tailings pond and mine safety hidden dangers[J]. Sci Technol Innov Her, 2011, 8(14):61.DOI:10.16660/j.cnki.1674-098x.2011.14.036. | |
[12] | 朱晓勇, 胡国长. 花岗岩露天关闭矿山生态修复技术应用[J]. 地质与勘探, 2022, 58(1):168-175. |
ZHU X Y, HU G Z. Application of ecological restoration technology to closed granite open pit mines[J]. Geol Explor, 2022, 58(1):168-175.DOI:10.12134/j.dzykt.2022.01.016. | |
[13] | 付天池, 叶小舟, 何宝林. 某废弃矿山地质环境治理及生态修复技术研究[J]. 现代矿业, 2020, 36(12):230-233. |
FU T C, YE X Z, HE B L. Study on geological environment treatment and ecological restoration technology of an abandoned mine[J]. Mod Min, 2020, 36(12):230-233.DOI:10.3969/j.issn.1674-6082.2020.12.071. | |
[14] | 曹振, 丁文博. 辽宁省矿山开采损毁土地现状与复垦措施研究[J]. 国土资源, 2010(11):54-55. |
CAO Z, DING W B. Study on the present situation and reclamation measures of mining damaged land in Liaoning Province[J]. Land & Resour, 2010(11):54-55.DOI:10.3969/j.issn.1671-1904.2010.11.023. | |
[15] | 胡亮, 贺治国. 矿山生态修复技术研究进展[J]. 矿产保护与利用, 2020, 40(4):40-45. |
HU L, HE Z G. Research progress of ecological restoration technology in mines[J]. Conserv Util Miner Resour, 2020, 40(4):40-45.DOI:10.13779/j.cnki.issn1001-0076.2020.04.006. | |
[16] | 郭东升, 张显. 客土喷播技术在矿山地质环境治理中的应用[J]. 中国环境管理干部学院学报, 2016, 26(1):86-89. |
GUO D S, ZHANG X. The application of Ketu spray seeding technology in mine geological environment treatment[J]. J Environ Manag Coll China, 2016, 26(1):86-89.DOI:10.13358/j.issn.1008-813x.2016.01.24. | |
[17] | 肖利萍, 高小雨, 丁蕊, 等. 膨润土复合吸附剂中碱性材料筛选及对酸性矿山废水处理[J]. 非金属矿, 2013, 36(5):60-63. |
XIAO L P, GAO X Y, DING R, et al. Selection of the basic refractories in bentonite composite granule adsorbent for treating acid mine drainage[J]. Non Met Mines, 2013, 36(5):60-63.DOI:10.3969/j.issn.1000-8098.2013.05.021. | |
[18] | MOHAN D, PITTMAN C U Jr. Arsenic removal from water/wastewater using adsorbents: a critical review[J]. J Hazard Mater, 2007, 142(1/2):1-53.DOI:10.1016/j.jhazmat.2007.01.006. |
[19] | TONG L, FAN R G, YANG S C, et al. Development and status of the treatment technology for acid mine drainage[J]. Min Metall Explor, 2021, 38(1):315-327.DOI:10.1007/s42461-020-00298-3. |
[20] | CHEN F, YAO Q, TIAN J Y. Review of ecological restoration technology for mine tailings in China[J]. Eng Rev, 2016, 36(2):115-121. |
[21] | FELLET G, MARCHIOL L, DELLE VEDOVE G, et al. Application of biochar on mine tailings:effects and perspectives for land reclamation[J]. Chemosphere, 2011, 83(9):1262-1267.DOI:10.1016/j.chemosphere.2011.03.053. |
[22] | 胡振琪, 杨秀红, 鲍艳, 等. 论矿区生态环境修复[J]. 科技导报, 2005, 23(1):38-41. |
HU Z Q, YANG X H, BAO Y, et al. On the restoration of mine eco-environment[J]. Sci & Technol Rev, 2005, 23(1):38-41. | |
[23] | ASENSIO V, VEGA F A, SINGH B R, et al. Effects of tree vegetation and waste amendments on the fractionation of Cr,Cu,Ni,Pb and Zn in polluted mine soils[J]. Sci Total Environ, 2013, 443:446 453.DOI:10.1016/j.scitotenv.2012.09.069. |
[24] | WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 2017, 184:594-600.DOI:10.1016/j.chemosphere.2017.06.025. |
[25] | 张庆泉. 重金属污染土壤淋洗修复技术研究进展[J]. 山西化工, 2022, 42(3):60-61,112. |
ZHANG Q Q. Research progress in leaching remediation of heavy metal contaminated soil[J]. Shanxi Chem Ind, 2022, 42(3):60-61,112.DOI:10.16525/j.cnki.cn14-1109/tq.2022.03.025. | |
[26] | SUN W, JI B, KHOSO S A, et al. An extensive review on restoration technologies for mining tailings[J]. Environ Sci Pollut Res, 2018, 25(34):33911-33925.DOI:10.1007/s11356-018-3423-y. |
[27] | PU L M, LI Z, JIA M Y, et al. Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator:modification of root morphology and the expression of plant defense genes[J]. Environ Pollut, 2022, 303:119169.DOI:10.1016/j.envpol.2022.119169. |
[28] | PULFORD I D, WATSON C. Phytoremediation of heavy metal-contaminated land by trees: a review[J]. Environ Int, 2003, 29(4):529-540.DOI:10.1016/S0160-4120(02)00152-6. |
[29] | ANGST G, ANGST Š, FROUZ J, et al. Preferential degradation of leaf- vs.root-derived organic carbon in earthworm-affected soil[J]. Geoderma, 2020, 372:114391.DOI:10.1016/j.geoderma.2020.114391. |
[30] | HE X, ZHANG Y X, SHEN M C, et al. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials[J]. Bioresour Technol, 2016, 218:867-873.DOI:10.1016/j.biortech.2016.07.045. |
[31] | 李永庚, 蒋高明. 矿山废弃地生态重建研究进展[J]. 生态学报, 2004, 24(1):95-100. |
LI Y G, JIANG G M. Ecological restoration of mining wasteland in both China and abroad: an over review[J]. Acta Ecol Sin, 2004, 24(1):95-100.DOI:10.3321/j.issn:1000-0933.2004.01.015. | |
[32] | 刘紫薇. 不同微生物菌剂对矿区复垦地土壤基质改良效果的研究[D]. 阜新: 辽宁工程技术大学, 2021. |
LIU Z W. Effect of different microbial agents on soil matrix improvement of reclaimed land in mining area[D]. Fuxin:Liaoning Technical University, 2021. | |
[33] | UROZ S, CALVARUSO C, TURPAULT M P, et al. Mineral weathering by bacteria:ecology,actors and mechanisms[J]. Trends Microbiol, 2009, 17(8):378-387.DOI:10.1016/j.tim.2009.05.004. |
[34] | MAPELLI F, MARASCO R, BALLOI A, et al. Mineral-microbe interactions:biotechnological potential of bioweathering[J]. J Biotechnol, 2012, 157(4):473-481.DOI:10.1016/j.jbiotec.2011.11.013. |
[35] | FARHAT M B, FARHAT A, BEJAR W, et al. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa[J]. Arch Microbiol, 2009, 191(11):815-824.DOI:10.1007/s00203-009-0513-8. |
[36] | BRUCKER E, KERNCHEN S, SPOHN M. Release of phosphorus and silicon from minerals by soil microorganisms depends on the availability of organic carbon[J]. Soil Biol Biochem, 2020, 143:107737.DOI:10.1016/j.soilbio.2020.107737. |
[37] | WU Y W, ZHANG J C, GUO X P. An indigenous soil bacterium facilitates the mitigation of rocky desertification in carbonate mining areas[J]. Land Degrad Develop, 2017, 28(7):2222-2233.DOI:10.1002/ldr.2749. |
[38] | WU Y W, ZHANG J C, GUO X P, et al. Isolation and characterisation of a rock solubilising fungus for application in mine-spoil reclamation[J]. Eur J Soil Biol, 2017, 81:76-82.DOI:10.1016/j.ejsobi.2017.06.011. |
[39] | SATTAR A, NAVEED M, ALI M, et al. Perspectives of potassium solubilizing microbes in sustainable food production system: a review[J]. Appl Soil Ecol, 2019, 133:146-159.DOI:10.1016/j.apsoil.2018.09.012. |
[40] | GOPALAKRISHNAN S, SRINIVAS V, SAMINENI S. Nitrogen fixation,plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.)[J]. Biocatal Agric Biotechnol, 2017, 11:116-123.DOI:10.1016/j.bcab.2017.06.012. |
[41] | YU H, LIU X Y, YANG C, et al. Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems[J]. Soil Biol Biochem, 2021, 161:108382.DOI:10.1016/j.soilbio.2021.108382. |
[42] | TABASSUM B, KHAN A, TARIQ M, et al. Bottlenecks in commercialisation and future prospects of PGPR[J]. Appl Soil Ecol, 2017, 121:102-117.DOI:10.1016/j.apsoil.2017.09.030. |
[43] | LINDSTRÖM K, MOUSAVI S A. Effectiveness of nitrogen fixation in rhizobia[J]. Microb Biotechnol, 2020, 13(5):1314-1335.DOI:10.1111/1751-7915.13517. |
[44] | NADEEM S M, AHMAD M, ZAHIR Z A, et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnol Adv, 2014, 32(2):429-448.DOI:10.1016/j.biotechadv.2013.12.005. |
[45] | FRENCH K E. Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health[J]. Front Microbiol, 2017, 8:1403.DOI:10.3389/fmicb.2017.01403. |
[46] | COBAN O, DE DEYN G B, VAN DER PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584):abe0725.DOI:10.1126/science.abe0725. |
[47] | RIAZ M, KAMRAN M, FANG Y Z, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review[J]. J Hazard Mater, 2021, 402:123919.DOI:10.1016/j.jhazmat.2020.123919. |
[48] | BRUNDRETT M C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[J]. Plant Soil, 2009, 320(1):37-77.DOI:10.1007/s11104-008-9877-9. |
[49] | WANG W X, SHI J C, XIE Q J, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis[J]. Mol Plant, 2017, 10(9):1147-1158.DOI:10.1016/j.molp.2017.07.012. |
[50] | WU S L, LIU Y J, SOUTHAM G, et al. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization[J]. Sci Total Environ, 2019, 651:192-202.DOI:10.1016/j.scitotenv.2018.09.171. |
[51] | 吴雁雯, 张金池, 郭晓平, 等. 应用于矿山修复的高效菌株鉴定与溶岩机制:基于增强回归树分析[J]. 环境科学, 2017, 38(1):283-293. |
WU Y W, ZHANG J C, GUO X P, et al. Identification of efficient strain applied to mining rehabilitation and its rock corrosion mechanism: based on boosted regression tree analysis[J]. Environ Sci, 2017, 38(1):283-293.DOI:10.13227/j.hjkx.201607075. | |
[52] | 王丽, 张金池, 梦莉, 等. 土壤菌对植被生长及喷播基质物理结构的影响[J]. 水土保持学报, 2011, 25(2):144-147,152. |
WANG L, ZHANG J C, MENG L, et al. Effects of soil fungi on vegetation growth and physical structural of spray seeding matrix[J]. J Soil Water Conserv, 2011, 25(2):144-147,152.DOI:10.13870/j.cnki.stbcxb.2011.02.001. | |
[53] | WU Y W, ZHANG J C, WANG L J, et al. A rock-weathering bacterium isolated from rock surface and its role in ecological restoration on exposed carbonate rocks[J]. Ecol Eng, 2017, 101:162-169.DOI:10.1016/j.ecoleng.2017.01.023. |
[54] | LIAN B, CHEN Y, ZHU L J, et al. Effect of microbial weathering on carbonate rocks[J]. Earth Sci Front, 2008, 15(6):90-99.DOI:10.1016/S1872-5791(09)60009-9. |
[55] | SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates,soil biota,and soil organic matter dynamics[J]. Soil Tillage Res, 2004, 79(1):7-31.DOI:10.1016/j.still.2004.03.008. |
[56] | RASHID M I, MUJAWAR L H, SHAHZAD T, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils[J]. Microbiol Res, 2016, 183:26-41.DOI:10.1016/j.micres.2015.11.007. |
[57] | RILLIG M C. Arbuscular mycorrhizae,glomalin,and soil aggregation[J]. Can J Soil Sci, 2004, 84(4):355-363.DOI:10.4141/s04-003. |
[58] | REQUENA N, PEREZ-SOLIS E, AZCÓN-AGUILAR C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Appl Environ Microbiol, 2001, 67(2):495-498.DOI:10.1128/AEM.67.2.495-498.2001. |
[59] | TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. J Soil Sci, 1982, 33(2):141-163.DOI:10.1111/j.1365-2389.1982.tb01755.x. |
[60] | BLANKINSHIP J C, FONTE S J, SIX J, et al. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem[J]. Geoderma, 2016, 272:39-50.DOI:10.1016/j.geoderma.2016.03.008. |
[61] | LI C, JIA Z H, PENG X N, et al. Functions of mineral-solubilizing microbes and a water retaining agent for the remediation of abandoned mine sites[J]. Sci Total Environ, 2021, 761:143215.DOI:10.1016/j.scitotenv.2020.143215. |
[62] | LI C, JIA Z H, YUAN Y D, et al. Effects of mineral-solubilizing microbial strains on the mechanical responses of roots and root-reinforced soil in external-soil spray seeding substrate[J]. Sci Total Environ, 2020, 723:138079.DOI:10.1016/j.scitotenv.2020.138079. |
[63] | GÖHRE V, PASZKOWSKI U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6):1115-1122.DOI:10.1007/s00425-006-0225-0. |
[64] | PULSAWAT W, LEKSAWASDI N, ROGERS P L, et al. Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli[J]. Biotechnol Lett, 2003, 25(15):1267-1270.DOI:10.1023/a:1025083116343. |
[65] | CHRISTIE P, LI X L, CHEN B D. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc[J]. Plant Soil, 2004, 261(1/2):209-217.DOI:10.1023/B:PLSO.0000035542.79345.1b. |
[66] | ZHOU J L. Zn biosorption by Rhizopus arrhizus and other fungi[J]. Appl Microbiol Biotechnol, 1999, 51(5):686-693.DOI:10.1007/s002530051453. |
[67] | BRAUD A, JÉZÉQUEL K, VIEILLE E, et al. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants,organic acids and siderophores[J]. Water Air Soil Pollut:Focus, 2006, 6(3):261-279.DOI:10.1007/s11267-005-9022-1. |
[68] | CHEN H, CUTRIGHT T J. Preliminary evaluation of microbially mediated precipitation of cadmium,chromium,and nickel by rhizosphere consortium[J]. J Environ Eng,2003,129( 1):4-9.DOI:10.1061/(asce)0733-9372(2003)129:1(4). |
[69] | GILIS A, CORBISIER P, BAEYENS W, et al. Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34[J]. J Ind Microbiol Biotechnol, 1998, 20(1):61-68.DOI:10.1038/sj.jim.2900478. |
[70] | ROUCH D A, LEE B T O, MORBY A P. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance[J]. J Ind Microbiol, 1995, 14(2):132-141.DOI:10.1007/BF01569895. |
[71] | HAFERBURG G, KOTHE E. Microbes and metals: interactions in the environment[J]. J Basic Microbiol, 2007, 47(6):453-467.DOI:10.1002/jobm.200700275. |
[72] | DIMKPA C O, MERTEN D, SVATOŠ A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biol Biochem, 2009, 41(1):154-162.DOI:10.1016/j.soilbio.2008.10.010. |
[73] | SARAVANAN V S, MADHAIYAN M, THANGARAJU M. Solubilization of zinc compounds by the diazotrophic,plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 2007, 66(9):1794-1798.DOI:10.1016/j.chemosphere.2006.07.067. |
[74] | MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnol Adv, 2011, 29(2):248-258.DOI:10.1016/j.biotechadv.2010.12.001. |
[75] | SCHÜTZENDÜBEL A, POLLE A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization[J]. J Exp Bot, 2002, 53(372):1351-1365.DOI:10.1093/jxb/53.372.1351. |
[76] | SHARMA S, ANAND G, SINGH N, et al. Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism[J]. Front Plant Sci, 2017, 8:906.DOI:10.3389/fpls.2017.00906. |
[77] | JANEESHMA E, PUTHUR J T. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants[J]. Arch Microbiol, 2020, 202(1):1-16.DOI:10.1007/s00203-019-01730-z. |
[78] | ZHAN F D, LI B, JIANG M, et al. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize[J]. Environ Sci Pollut Res, 2018, 25(24):24338-24347.DOI:10.1007/s11356-018-2487-z. |
[79] | WANG Y P, HUANG J, GAO Y Z. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L.and resists cadmium toxicity[J]. PLoS One, 2012, 7(11):e48669.DOI:10.1371/journal.pone.0048669. |
[80] | NORDSTROM D K, BLOWES D W, PTACEK C J. Hydrogeochemistry and microbiology of mine drainage: an update[J]. Appl Geochem, 2015, 57:3-16.DOI:10.1016/j.apgeochem.2015.02.008. |
[81] | AKCIL A, KOLDAS S. Acid mine drainage (AMD):causes,treatment and case studies[J]. J Clean Prod, 2006, 14(12/13):1139-1145.DOI:10.1016/j.jclepro.2004.09.006. |
[82] | FERNANDO W A M, ILANKOON I M S K, SYED T H, et al. Challenges and opportunities in the removal of sulphate ions in contaminated mine water:a review[J]. Miner Eng, 2018, 117:74-90.DOI:10.1016/j.mineng.2017.12.004. |
[83] | MOODLEY I, SHERIDAN C M, KAPPELMEYER U, et al. Environmentally sustainable acid mine drainage remediation: research developments with a focus on waste/by-products[J]. Miner Eng, 2018, 126:207-220.DOI:10.1016/j.mineng.2017.08.008. |
[84] | CASTRO H F, WILLIAMS N H, OGRAM A. Phylogeny of sulfate-reducing bacteria[J]. FEMS Microbiol Ecol, 2000, 31(1):1-9.DOI:10.1016/S0168-6496(99)00071-9. |
[85] | PANDA S, MISHRA S, AKCIL A. Bioremediation of acidic mine effluents and the role of sulfidogenic biosystems: a mini-review[J]. Euro-Mediterr J Environ Integr, 2016, 1(1):8.DOI:10.1007/s41207-016-0008-3. |
[86] | RUEHL M D, HIIBEL S R. Evaluation of organic carbon and microbial inoculum for bioremediation of acid mine drainage[J]. Miner Eng, 2020, 157:106554.DOI:10.1016/j.mineng.2020.106554. |
[87] | SHU W S, HUANG L N. Microbial diversity in extreme environments[J]. Nat Rev Microbiol, 2022, 20(4):219-235.DOI:10.1038/s41579-021-00648-y. |
[88] | IGHALO J O, KURNIAWAN S B, IWUOZOR K O, et al. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD)[J]. Process Saf Environ Prot, 2022, 157:37-58.DOI:10.1016/j.psep.2021.11.008. |
[89] | ZHU J, ZHANG P, YUAN S H, et al. Arsenic oxidation and immobilization in acid mine drainage in Karst areas[J]. Sci Total Environ, 2020, 727:138629.DOI:10.1016/j.scitotenv.2020.138629. |
[90] | PURWANTI I F, OBENU A, TANGAHU B V, et al. Bioaugmentation of Vibrio alginolyticus in phytoremediation of aluminium-contaminated soil using Scirpus grossus and Thypa angustifolia[J]. Heliyon, 2020, 6(9):e05004.DOI:10.1016/j.heliyon.2020.e05004. |
[91] | GUITTONNY-LARCHEVÊQUE M, BUSSIÈRE B, PEDNAULT C. Tree-substrate water relations and root development in tree plantations used for mine tailings reclamation[J]. J Environ Qual, 2016, 45(3):1036-1045.DOI:10.2134/jeq2015.09.0477. |
[92] | SIMARD S W, BEILER K J, BINGHAM M A, et al. Mycorrhizal networks: mechanisms,ecology and modelling[J]. Fungal Biol Rev, 2012, 26(1):39-60.DOI:10.1016/j.fbr.2012.01.001. |
[93] | WU Q S, SRIVASTAVA A K, ZOU Y N. AMF-induced tolerance to drought stress in citrus: a review[J]. Sci Hortic, 2013, 164:77-87.DOI:10.1016/j.scienta.2013.09.010. |
[94] | DE DORLODOT S, FORSTER B, PAGÈS L, et al. Root system architecture: opportunities and constraints for genetic improvement of crops[J]. Trends Plant Sci, 2007, 12(10):474-481.DOI:10.1016/j.tplants.2007.08.012. |
[95] | MAIQUETÍA M, CÁCERES A, HERRERA A. Mycorrhization and phosphorus nutrition affect water relations and CAM induction by drought in seedlings of Clusia minor[J]. Ann Bot, 2008, 103(3):525-532.DOI:10.1093/aob/mcn238. |
[96] | ASMELASH F, BEKELE T, BIRHANE E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands[J]. Front Microbiol, 2016, 7:1095.DOI:10.3389/fmicb.2016.01095. |
[97] | KAPILAN R, VAZIRI M, ZWIAZEK J J. Regulation of aquaporins in plants under stress[J]. Biol Res, 2018, 51(1):4.DOI:10.1186/s40659-018-0152-0. |
[98] | HE F, ZHANG H Q, TANG M. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L.[J]. Mycorrhiza, 2016, 26(4):311-323.DOI:10.1007/s00572-015-0670-3. |
[99] | SCHAUMANN G E, BRAUN B, KIRCHNER D, et al. Influence of biofilms on the water repellency of urban soil samples[J]. Hydrol Process, 2007, 21(17):2276-2284.DOI:10.1002/hyp.6746. |
[100] | OR D, PHUTANE S, DECHESNE A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils[J]. Vadose Zone J, 2007, 6(2):298-305.DOI:10.2136/vzj2006.0080. |
[101] | HENAO L J, MAZEAU K. Molecular modelling studies of clay-exopolysaccharide complexes: soil aggregation and water retention phenomena[J]. Mater Sci Eng C, 2009, 29(8):2326-2332.DOI:10.1016/j.msec.2009.06.001. |
[102] | GUO Y S, FURRER J M, KADILAK A L, et al. Bacterial extracellular polymeric substances amplify water content variability at the pore scale[J]. Front Environ Sci, 2018, 6:93.DOI:10.3389/fenvs.2018.00093. |
[103] | OR D, SMETS B F, WRAITH J M, et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media-a review[J]. Adv Water Resour, 2007, 30(6/7):1505-1527.DOI:10.1016/j.advwatres.2006.05.025. |
[104] | CRUZ B C, FURRER J M, GUO Y, et al. Pore-scale water dynamics during drying and the impacts of structure and surface wettability[J]. Water Resour Res, 2017, 53(7):5585-5600.DOI:10.1002/2016wr019862. |
[105] | GEORGE D B, ROUNDY B A, ST CLAIR L L, et al. The effects of microbiotic soil crustson soil water loss[J]. Arid Land Res Manag, 2003, 17(2):113-125.DOI:10.1080/15324980301588. |
[106] | PORCEL R, AROCA R, RUIZ-LOZANO J M. Salinity stress alleviation using arbuscular mycorrhizal fungi[J]. Agron Sustain Dev, 2012, 32(1):181-200.DOI:10.1007/s13593-011-0029-x. |
[107] | VÍLCHEZ J I, GARCÍA-FONTANA C, ROMÁN-NARANJO D, et al. Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms[J]. Front Microbiol, 2016, 7:1577.DOI:10.3389/fmicb.2016.01577. |
[108] | WOODCOCK S D, SYSON K, LITTLE R H, et al. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa[J]. PLoS Genet, 2021, 17(4):e1009524.DOI:10.1371/journal.pgen.1009524. |
[109] | KANG S M, RADHAKRISHNAN R, KHAN A L, et al. Gibberellin secreting rhizobacterium,Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions[J]. Plant Physiol Biochem, 2014, 84:115-124.DOI:10.1016/j.plaphy.2014.09.001. |
[110] | RAHEEM A, SHAPOSHNIKOV A, BELIMOV A A, et al. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress[J]. Arch Agron Soil Sci, 2018, 64(4):574-587.DOI:10.1080/03650340.2017.1362105. |
[111] | SATI D, PANDE V, PANDEY S C, et al. Recent advances in PGPR and molecular mechanisms involved in drought stress resistance[J]. J Soil Sci Plant Nutr, 2022:1-19.DOI:10.1007/s42729-021-00724-5. |
[112] | ABBASPOUR H, SAEIDI-SAR S, AFSHARI H, et al. Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions[J]. J Plant Physiol, 2012, 169(7):704-709.DOI:10.1016/j.jplph.2012.01.014. |
[113] | NARAYANASAMY S, THANGAPPAN S, UTHANDI S. Plant growth-promoting Bacillus sp.cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system[J]. Microbiol Res, 2020, 239:126518.DOI:10.1016/j.micres.2020.126518. |
[114] | FENG Y, WANG J M, BAI Z K, et al. Three-dimensional quantification of macropore networks of different compacted soils from opencast coal mine area using X-ray computed tomography[J]. Soil Tillage Res, 2020, 198:104567.DOI:10.1016/j.still.2019.104567. |
[115] | MIRANSARI M. Corn (Zea mays L.) growth as affected by soil compaction and arbuscular mycorrhizal fungi[J]. J Plant Nutr, 2013, 36(12):1853-1867.DOI:10.1080/01904167.2013.816729. |
[116] | RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure[J]. New Phytol, 2006, 171(1):41-53.DOI:10.1111/j.1469-8137.2006.01750.x. |
[117] | POLANCO M C, ZWIAZEK J J, VOICU M C. Responses of ectomycorrhizal American elm (Ulmus)[J]. Plant Soil, 2008, 308(1):189-200.DOI:10.1007/s11104-008-9619-z. |
[118] | MAWARDA P C, LE ROUX X, DIRK VAN ELSAS J, et al. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities[J]. Soil Biol Biochem, 2020, 148:107874.DOI:10.1016/j.soilbio.2020.107874. |
[119] | KURKJIAN H M, AKBARI M J, MOMENI B. The impact of interactions on invasion and colonization resistance in microbial communities[J]. PLoS Comput Biol, 2021, 17(1):e1008643.DOI:10.1371/journal.pcbi.1008643. |
[120] | MALLON C A, LE ROUX X, VAN DOORN G S, et al. The impact of failure:unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche[J]. ISME J, 2018, 12(3):728-741.DOI:10.1038/s41396-017-0003-y. |
[121] | MOORE J A M, ABRAHAM P E, MICHENER J K, et al. Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects[J]. New Phytol, 2022, 234(6):1914-1918.DOI:10.1111/nph.18010. |
[122] | CHEN C, WANG M, ZHU J Z, et al. Long-term effect of epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process[J]. Microbiome, 2022, 10(1):36.DOI:10.1186/s40168-022-01236-9. |
[123] | HASKETT T L, TKACZ A, POOLE P S. Engineering rhizobacteria for sustainable agriculture[J]. ISME J, 2021, 15(4):949-964.DOI:10.1038/s41396-020-00835-4. |
[124] | MEYER G, BÜNEMANN E K, FROSSARD E, et al. Gross phosphorus fluxes in a calcareous soil inoculated with Pseudomonas protegens CHA0 revealed by 33P isotopic dilution[J]. Soil Biol Biochem, 2017, 104:81-94.DOI:10.1016/j.soilbio.2016.10.001. |
[125] | RAYMOND N S, GÓMEZ-MUÑOZ B, VAN DER BOM F J T, et al. Phosph-ate-solubilising microorganisms for improved crop productivity: a critical assessment[J]. New Phytol, 2021, 229(3):1268-1277.DOI:10.1111/nph.16924. |
[126] | UROZ S, PICARD L, TURPAULT M P. Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria[J]. Trends Microbiol, 2022, 30(9):882-897. DOI:10.1016/j.tim.2022.01.019. |
[1] | WANG Lingjian, JIA Zhaohui, ZHANG Jinchi, TANG Xinggang, SUN Xin, MENG Miaojing, LIU Xin. Optimization for fermentation conditions and analysis of application effect for high efficiency dissolution strain Bt NL-11 from Bacillus thuringiensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 71-80. |
[2] | SA Rula, WANG Zirui, HUA Yongchun, HU Richa, LIU Lei, GAO Minglong, YU Xiaoyu. Evaluating forest ecosystem restoration ability of natural forest in northern Greater Khingan Mountains by a structural equation model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 196-204. |
[3] | ZHANG Ganglong, ZHU Enyong, LIU Liting, YANG Jiaqi, WANG Yannan, MO Xiaoyong. Optimization of the tissue culture technology system of Dicranopteris pedata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 107-114. |
[4] | LI Wei, LI Jiping, ZHANG Yinlong, LI Pingping, HAN Jiangang. Ecological restoration technologies for lake wetlands for carbon peaking and neutrality [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 157-166. |
[5] | XU Haishun, DU Hongyu, CAI Chaolin. Spatial characteristics of landscape pattern based on ecological restoration in the riparian zone of Huangpu River, Shanghai City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 125-131. |
[6] | YUAN Fang, CHEN Huaiyan, KANG Xin, SHENG Sheng, XU Chi, LIU Maosong. Relationship between shoreline morphology and elements distribution in near-shore sediments [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 9-14. |
[7] | MAO Xuegang, WANG Hang. Assessing ecological and environmental vulnerability of Miyun County in Beijing according to pixel scale [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(01): 96-102. |
[8] | CAO Jiajie, LU Jun’an, RUAN Honghua. Effects of underwater illumination compensation on growth and physiological indices of submerged macrophyte Vallisneria natans L. [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(05): 102-106. |
[9] | XU Xinzhou,XUE Jianhui,LYU Zhigang,LIU Chunlai. A research of ecological function area and vegetation restoration at Taihu Gonghu bay wetland [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(03): 35-40. |
[10] | FENG Yuqing1,2, WANG Ying1, RUAN Honghua1*. A review of the researches on riparian zones [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(06): 127-. |
[11] | FENG Yuqing1,2, WANG Shaojun1*, RUAN Honghua1, ZHANG Yinlong1, GUAN Qingwei1, XU Zhen1. Ecological restoration and strategy on a riparian zone at Taihu Lake in Suzhou City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(05): 126-. |
[12] | HAN Weidong,LING Dajiong,LI Yan,WU XiaofengAgricultural College Zhanjiang Ocean University, Zhanjiang 524088,China). The Soil Dynamic Study of Restored Sonneratia apetala Plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2003, 27(02): 49-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||