JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6): 251-260.doi: 10.12302/j.issn.1000-2006.202209037
Special Issue: 南京林业大学120周年校庆特刊
Previous Articles Next Articles
CHU Chenchen(), SUN Mingsheng, WU Yuhan, YAN Zhenyu, LI Ting, FENG Yangfan, GUO Ying, YIN Tongming, XUE Liangjiao()
Received:
2022-09-19
Revised:
2022-10-19
Online:
2022-11-30
Published:
2022-11-24
Contact:
XUE Liangjiao
E-mail:8200110010@njfu.edu.cn;lxue@njfu.edu.cn
CLC Number:
CHU Chenchen, SUN Mingsheng, WU Yuhan, YAN Zhenyu, LI Ting, FENG Yangfan, GUO Ying, YIN Tongming, XUE Liangjiao. Pan-genome and genomic variation analyses of Populus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 251-260.
Table 1
Summary statistics of poplar genome assemblies"
种/品种 species/cultivar | 单倍型 haplotype | 简称 short name | 基因组 大小/Mb genome size | 组装质量 评估/% BUSCO | 基因数量 number of genes | 平均基因 长度/bp average gene length | 平均CDS 长度/bp average CDS length |
---|---|---|---|---|---|---|---|
银白杨 P. alba | P.alba | 417.1 | 94.0 | 33 472 | 3 850 | 2 077 | |
新疆杨 P. alba var. pyramidalis | P.alba pyr | 408.1 | 89.8 | 40 214 | 3 646 | 1 115 | |
美洲黑杨‘2-2’ P. deltoides‘2-2’ | P.del2 | 431.9 | 96.4 | 37 900 | 3 289 | 1 401 | |
美洲黑杨‘I-69’ P. deltoides‘I-69’ | P.delI | 424.6 | 97.1 | 31 722 | 3 561 | 1 740 | |
胡杨P. euphratica | P.eup | 574.3 | 96.7 | 36 606 | 3 454 | 1 128 | |
小叶杨P. simonii | P.sim | 441.4 | 96.2 | 45 127 | 3 138 | 1 075 | |
欧洲山杨P. tremula | P.tre | 408.8 | 97.6 | 37 184 | 4 131 | 2 353 | |
毛果杨 P. trichocarpa | P.tri | 392.2 | 97.9 | 34 699 | 3 646 | 2 163 | |
银腺杨P. alba × P. tremula var. glandulosa | hapA | P.ag hA | 356.0 | 97.5 | 38 368 | 3 164 | 1 286 |
hapG | P.ag hG | 354.0 | 96.5 | 38 471 | 3 121 | 1 257 | |
毛白杨 P. tomentosa | hapA | P.tom hA | 336.7 | 96.3 | 28 863 | 3 543 | 1 301 |
hapD | P.tom hD | 344.4 | 94.3 | 28 951 | 3 528 | 1 292 | |
三倍体毛白杨 P.× tomentosa clone 741 | hap1 | P.tom T h1 | 352.4 | 96.8 | 27 173 | 3 905 | 1 544 |
hap2 | P.tom T h2 | 329.7 | 97.7 | 24 987 | 3 866 | 1 539 | |
hap3 | P.tom T h3 | 382.9 | 96.2 | 29 382 | 3 877 | 1 540 |
Table 2
Statistics of detected genomic variations using graph-base poplar pan-genome"
种/品种 tree species/ cultivar | 变异类型 variant type | 基因组变异数目 variant number from genome assemblies | 图泛基因组 检测变异数目 variants number of called using graph-base pan-genome | 变异重叠数目 number of common variantion | 变异比值/% ratio of variantion |
---|---|---|---|---|---|
SNP | 5 105 506 | 8 049 509 | 4 197 301 | 157.66 | |
银白杨 P.alba | InDel | 1 001 519 | 1 456 832 | 646 141 | 145.46 |
PAV | 2 241 | 4 684 | 1 985 | 209.00 | |
SNP | 7 057 106 | 10 763 171 | 6 257 596 | 152.52 | |
美州黑杨‘2-2’ P.del 2 | InDel | 1 374 430 | 2 044 506 | 1 086 692 | 148.75 |
PAV | 3 009 | 5 563 | 2 825 | 184.88 | |
SNP | 4 968 151 | 10 122 781 | 4 106 298 | 203.75 | |
胡杨 P.eup | InDel | 909 977 | 1 859 804 | 647 873 | 204.38 |
PAV | 1 605 | 4 820 | 1 406 | 300.29 | |
SNP | 4 561 434 | 8 065 104 | 4 057 224 | 176.81 | |
欧洲山杨 P.tre | InDel | 795 356 | 1 524 214 | 656 397 | 191.64 |
PAV | 1 658 | 4 767 | 1 487 | 287.49 |
[1] | TETTELIN H, MASIGNANI V, CIESLEWICZ M J, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:implications for the microbial pan-genome[J]. Proc Natl Acad Sci USA, 2005, 102(39):13950-13955.DOI:10.1073/pnas.0506758102. |
[2] | LI Y H, ZHOU G Y, MA J X, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nat Biotechnol, 2014, 32(10):1045-1052.DOI:10.1038/nbt.2979. |
[3] | HIRSCH C N, FOERSTER J M, JOHNSON J M, et al. Insights into the maize pan-genome and pan-transcriptome[J]. Plant Cell, 2014, 26(1):121-135.DOI:10.1105/tpc.113.119982. |
[4] | SCHATZ M C, MARON L G, STEIN J C, et al. Whole genome de novo assemblies of three divergent strains of rice,Oryza sativa,document novel gene space of aus and indica[J]. Genome Biol, 2014, 15(11):506.DOI:10.1186/PREACCEPT-2784872521277375. |
[5] | GOLICZ A A, BAYER P E, BARKER G C, et al. The pangenome of an agronomically important crop plant Brassica oleracea[J]. Nat Commun, 2016, 7:13390.DOI:10.1038/ncomms13390. |
[6] | PINOSIO S, GIACOMELLO S, FAIVRE-RAMPANT P, et al. Characterization of the poplar pan-genome by genome-wide identification of structural variation[J]. Mol Biol Evol, 2016, 33(10):2706-2719.DOI:10.1093/molbev/msw161. |
[7] | LIU Y C, DU H L, LI P C, et al. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182(1):162-176.e13.DOI:10.1016/j.cell.2020.05.023. |
[8] | CAO K, PENG Z, ZHAO X, et al. Pan-genome analyses of peach and its wild relatives provide insights into the genetics of disease resistance and species adaptation[EB/OL]. (2020-09-13)[2022-10-05]. https://www.biorxiv.org/content/10.1101/2020.07.13.200204v1.abstract. |
[9] | DIFAZIO S, SLAVOV G, JOSHI C. Populus:a premier pioneer system for plant genomics[C]// JOSHI C P,DIFAZIO S P,KOLE C. Genetics, Genomics and Breeding of Poplar. Enfield, USA: Science Publishers, 2011. |
[10] | GA T, S D, S J, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-604.DOI:10.1126/science.1128691. |
[11] | MA T, WANG J Y, ZHOU G K, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nat Commun, 2013, 4:2797.DOI:10.1038/ncomms3797. |
[12] | WANG J, DING J H, TAN B Y, et al. A major locus controls local adaptation and adaptive life history variation in a perennial plant[J]. Genome Biol, 2018, 19(1):72.DOI:10.1186/s13059-018-1444-y. |
[13] | XUE L J, WU H T, CHEN Y N, et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides[J]. Nat Commun, 2020, 11:5893.DOI:10.1038/s41467-020-19559-2. |
[14] | BAI S J, WU H N, ZHANG J P, et al. Genome assembly of Salicaceae Populus deltoides (eastern cottonwood) I-69 based on nanopore sequencing and hi-C technologies[J]. J Hered, 2021, 112(3):303-310.DOI:10.1093/jhered/esab010. |
[15] | WU H N, YAO D, CHEN Y H, et al. De novo genome assembly of Populus simonii further supports that Populus simonii and Populus trichocarpa belong to different sections[J]. G3 Genes|Genomes|Genetics, 2020, 10(2):455-466.DOI:10.1534/g3.119.400913. |
[16] | YANG W L, WANG D Y, LI Y L, et al. A general model to explain repeated turnovers of sex determination in the Salicaceae[J]. Mol Biol Evol, 2020, 38(3):968-980.DOI:10.1093/molbev/msaa261. |
[17] | LIU Y J, WANG X R, ZENG Q Y. De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River Basin in China[J]. Sci China Life Sci, 2019, 62(5):609-618.DOI:10.1007/s11427-018-9455-2. |
[18] | ZHANG L, ZHAO J T, BI H, et al. Bioinformatic analysis of chromatin organization and biased expression of duplicated genes between two poplars with a common whole-genome duplication[J]. Hortic Res, 2021, 8:62.DOI:10.1038/s41438-021-00494-2. |
[19] | LI Y, WANG D, WANG W, et al. A chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determination[J]. Mol Ecol, 2022:2022-06-17. DOI:10.1111/mec.16566. |
[20] | QIU D Y, BAI S L, MA J C, et al. The genome of Populus alba × Populus tremula var.glandulosa clone 84K[J]. DNA Res, 2019, 26(5):423-431.DOI:10.1093/dnares/dsz020. |
[21] | TONG S F, WANG Y B, CHEN N N, et al. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar[J]. Genome Biol, 2022, 23(1):148.DOI:10.1186/s13059-022-02718-7. |
[22] | ZHANG B Y, ZHU W X, DIAO S, et al. The poplar pangenome provides insights into the evolutionary history of the genus[J]. Commun Biol, 2019, 2:215.DOI:10.1038/s42003-019-0474-7. |
[23] | LI H, FENG X W, CHU C. The design and construction of reference pangenome graphs with minigraph[J]. Genome Biol, 2020, 21(1):265.DOI:10.1186/s13059-020-02168-z. |
[24] | QIN P, LU H W, DU H L, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(13):3542-3558.e16.DOI:10.1016/j.cell.2021.04.046. |
[25] | TAO Y F, LUO H, XU J B, et al. Extensive variation within the pan-genome of cultivated and wild sorghum[J]. Nat Plants, 2021, 7(6):766-773.DOI:10.1038/s41477-021-00925-x. |
[26] | ZHOU Y, ZHANG Z Y, BAO Z G, et al. Graph pangenome captures missing heritability and empowers tomato breeding[J]. Nature, 2022, 606(7914):527-534.DOI:10.1038/s41586-022-04808-9. |
[27] | ZHANG Z Y, CHEN Y, ZHANG J L, et al. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica)[J]. Mol Ecol Resour, 2020, 20(3):781-794.DOI:10.1111/1755-0998.13142. |
[28] | EVANS L M, SLAVOV G T, RODGERS-MELNICK E, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations[J]. Nat Genet, 2014, 46(10):1089-1096.DOI:10.1038/ng.3075. |
[29] | AN X M, GAO K, CHEN Z, et al. High quality haplotype-resolved genome assemblies of Populus tomentosa Carr.: a stabilized interspecific hybrid species widespread in Asia[J]. Mol Ecol Resour, 2022, 22(2):786-802.DOI:10.1111/1755-0998.13507. |
[30] | BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.DOI:10.1093/bioinformatics/btu170. |
[31] | SIMÃO F A, WATERHOUSE R M, IOANNIDIS P, et al. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs[J]. Bioinformatics, 2015, 31(19):3210-3212.DOI:10.1093/bioinformatics/btv351. |
[32] | EMMS D M, KELLY S. OrthoFinder:solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy[J]. Genome Biol, 2015, 16(1):157.DOI:10.1186/s13059-015-0721-2. |
[33] | SANDERSON M J. Estimating absolute rates of molecular evolution and divergence times:a penalized likelihood approach[J]. Mol Biol Evol, 2002, 19(1):101-9. |
[34] | DE BIE T, CRISTIANINI N, DEMUTH J P, et al. CAFE:a computational tool for the study of gene family evolution[J]. Bioinformatics, 2006, 22(10):1269-1271.DOI:10.1093/bioinformatics/btl097. |
[35] | TANG D, JIA Y X, ZHANG J Z, et al. Addendum:genome evolution and diversity of wild and cultivated potatoes[J]. Nature, 2022, 609(7929):E14.DOI:10.1038/s41586-022-05298-5. |
[36] | WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293. |
[37] | ALEXA A, RAHNENFUHRER J. topGO: enrichment analysis for gene ontology. R package version 2.36.0.[EB/OL].[2022-09-12]. https://bioconductor.org/packages/release/bioc/html/topGO.html |
[38] | YU G C, WANG L G, HAN Y Y, et al. clusterProfiler:an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287.DOI:10.1089/omi.2011.0118. |
[39] | MARÇAIS G, DELCHER A L, PHILLIPPY A M, et al. MUMmer4:a fast and versatile genome alignment system[J]. PLoS Comput Biol, 2018, 14(1):e1005944.DOI:10.1371/journal.pcbi.1005944. |
[40] | GOEL M, SUN H Q, JIAO W B, et al. SyRI:finding genomic rearrangements and local sequence differences from whole-genome assemblies[J]. Genome Biol, 2019, 20(1):277.DOI:10.1186/s13059-019-1911-0. |
[41] | GARRISON E, SIRÉN J, NOVAK A M, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference[J]. Nat Biotechnol, 2018, 36(9):875-879.DOI:10.1038/nbt.4227. |
[42] | CHEN K Y. Type Ⅱ Mads-box genes associated with poplar apical bud development and dormancy[D]. Maryland: University of Maryland, 2008. |
[43] | LI W, LIU J N, ZHANG H Y, et al. Plant pan-genomics:recent advances,new challenges,and roads ahead[J]. J Genet Genom, 2022, 49(9):833-846.DOI:10.1016/j.jgg.2022.06.004. |
[44] | GUI S T, WEI W J, JIANG C L, et al. A pan-Zea genome map for enhancing maize improvement[J]. Genome Biol, 2022, 23(1):178.DOI:10.1186/s13059-022-02742-7. |
[1] | CUI Hao, HAN Jiangang, GUO Yanhui, JI Huai, ZHU Yongli, LI Pingping. Monthly scale variation characteristics of net ecosystem exchange (NEE) in poplar plantations at the confluence of Hongze Lake and Huai River [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 19-26. |
[2] | HUA Weicheng, TIAN Jiarong, SUN Xinyu, XU Yannan. Assessing the stem taper function and volume estimation of poplar (Populus) by terrestrial laser scanning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 41-48. |
[3] | SHI Wenguang, LI Jing, ZHANG Yuhong, LEI Jingpin, LUO Zhibin. A comparative study on lead tolerance and accumulation of seven poplar species [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 61-70. |
[4] | ZHANG Tengqian, ZHANG Weixi, DING Changjun, ZHANG Jing, HU Zanmin, SU Xiaohua. Cloning and expression characteristics of PdMODD genes in Populus × euramericana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 43-50. |
[5] | HE Xudong, ZHENG Jiwei, SUN Chong, HE Kaiyue, WANG Baosong. Construction of fingerprints for 33 varieties in Salicaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 35-42. |
[6] | CHEN Yuhua, YAO Dan, WU Hainan, TAO Shengtong, WU Jiyan, YANG Wenguo, TONG Chunfa. Analyses of dynamic growth traits of the stecklings from the F1 hybrid progeny of Populus deltoides × P. simonii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 45-52. |
[7] | FENG Ye, ZHANG Huanchao, YANG Ruizhen, HU Lihuang. The influence of poplar-alder mixed forest and litter on soil nitrogen mineralization [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 191-196. |
[8] | LIAO Yangwenke, CUI Rongrong, XIE Yinfeng. The role of β-cyanoalanin synthase in polar leaves under salt stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 137-142. |
[9] | ZHAO Xiaojun, CHENG Fang, ZHANG Kang, HUANG Kaidong, NI Yun, MENG Xiao, TANG Luozhong. Root morphology of different poplar clone stecklings under waterlogging and flooding treatment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 1-8. |
[10] | XUAN Lei, XU Meng, XU Li’an, HUANG Minren. Cloning, expression and interaction analysis of MAGPIE and JACKDAW genes in Populus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(03): 29-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||