Potential distribution patterns and future changes of Ulmus pumila in China based on the MaxEnt model

HAN Shumin, YAN Wei, YANG Xuedong, HU Bo, YU Fengqiang, GAO Runhong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 103-110.

PDF(2686 KB)
PDF(2686 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 103-110. DOI: 10.12302/j.issn.1000-2006.202110031

Potential distribution patterns and future changes of Ulmus pumila in China based on the MaxEnt model

Author information +
History +

Abstract

【Objectives】This study investigated the influence of climatic conditions, distribution ranges, and future changes of Ulmus pumila in China to provide a theoretical basis for the scientific protection and rational development of U. pumila.【Method】MaxEnt and ArcGIS software were used here to predict the potential distribution areas of U. pumila under three climate scenarios of the present, 2050s, and 2070s (RCP2.6 and RCP6.0).【Result】This study on the distribution of U. pumila was important to reveal its ecological adaptability. The MaxEnt model predicted the potential distribution areas of U. pumila with a high accuracy, with the AUC values of the training and testing sets being 0.921 and 0.911, respectively. The contribution rates of temperature seasonality change (Bio4), annual precipitation (Bio12) and precipitation seasonality change (Bio15) were all 88.4%. The potential distribution of U. pumila during the current period was predicted based on climate and environmental variables. For this, the middle adaptive areas were concentrated in Xinjiang, central Inner Mongolia, Gansu and other northwest regions of China, with a small distribution being found in Jilin, Liaoning and Hulunbuir of Inner Mongolia. Additionally, highly adaptive areas were mainly concentrated in north China, such as Hebei, Shaanxi, Shanxi and Shandong provinces. With the context of global climate change, under different climate scenarios in the 2050s and 2070s (RCP2.6 and RCP6.0), the highly adaptive areas of U. pumila decreased, whilst the adaptive areas increased in the middle and lower areas, with an appearance of new potential adaptive areas. 【Conclusion】Annual temperature and precipitation were the main factors affecting the distributions of U. pumila. Currently, the adaptive areas of U. pumila are mainly concentrated within northern, northwestern, and northeastern China. In the future, it is projected to migrate to areas of high latitudes and altitudes.

Key words

Ulmus pumila / environmental factors / MaxEnt model / potential distribution

Cite this article

Download Citations
HAN Shumin , YAN Wei , YANG Xuedong , et al . Potential distribution patterns and future changes of Ulmus pumila in China based on the MaxEnt model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 103-110 https://doi.org/10.12302/j.issn.1000-2006.202110031

References

[1]
续九如, 宋婉, 邹受益, 等. 榆属树种遗传改良研究现状及思考[J]. 北京林业大学学报, 2000, 22(6):95-99.
XU J R, SONG W, ZOU S Y, et al. Research status and some consideration in genetic improvement of elm species[J]. J Beijing For Univ, 2000, 22(6):95-99.DOI:10.13332/j.1000-1522.2000.06.023.
[2]
REDFERN D B, SUTTON B C. Canker and dieback of Ulmus glabra caused by Plectophomella concentrica,and its relationship to P. ulmi[J]. Trans Br Mycol Soc, 1981, 77(2):381-390.DOI:10.1016/s0007-1536(81)80041-1.
[3]
YAN D T, CHEN W, LIU L, et al. Change in current and future geographic distributions of Ulmus lamellosa in China[J]. J For Res, 2018, 29(4):1147-1156.DOI:10.1007/s11676-017-0503-7.
[4]
WILLIS K J, BHAGWAT S A. Biodiversity and climate change[J]. Science, 2009, 326(5954):806-807.DOI:10.1126/science.1178838.
[5]
刘想, 龚熹, 陈思斯, 等. 基于MaxEnt和ArcGIS模拟檫木分布格局及其栖息地的变化[J]. 植物科学学报, 2018, 36(3):320-326.
LIU X, GONG X, CHEN S S, et al. Simulation of the distribution pattern of Sassafras tzumu and changes in habitat based on ArcGIS and MaxEnt[J]. Plant Sci J, 2018, 36(3):320-326.DOI:10.11913/PSJ.2095-0837.2018.30320.
[6]
昭日格. 应用RAPD技术进行白榆种群遗传多样性研究[D]. 呼和浩特: 内蒙古农业大学, 2011.
ZHAO R G. Study on genetic diversity among different populations of Ulmus pumila using RAPD method[D]. Hohhot: Inner Mongolia Agricultural University, 2011.
[7]
FENG Z T, DENG Y Q, FAN H, et al. Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture[J]. Photosynthetica, 2014, 52(2): 313-320. DOI: 10.1007/s11099-014-0032-y.
[8]
PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4):231-259.DOI:10.1016/j.ecolmodel.2005.03.026.
[9]
PHILLIPS S J, DUDÍK M, SCHAPIRE R E. A maximum entropy approach to species distribution modeling[C]// Twenty-first international conference on machine learning-ICML'04.July 4-8,2004.Banff,Alberta,Canada. New York: ACM Press, 2004:655-662.DOI:10.1145/1015330.1015412.
[10]
闫宇航, 岑云峰, 张鹏岩, 等. 基于MaxEnt模型的中国马尾松分布格局及未来变化[J]. 生态学杂志, 2019, 38(9):2896-2901.
YAN Y H, CEN Y F, ZHANG P Y, et al. Predicting distribution pattern and future change of Pinus massoniana in China based on MaxEnt model[J]. Chin J Ecol, 2019, 38(9):2896-2901.DOI:10.13292/j.1000-4890.201909.022.
[11]
于海彬, 张镱锂, 李士成, 等. 基于GIS和物种分布模型的高山植物长花马先蒿迁移路线模拟[J]. 应用生态学报, 2014, 25(6):1669-1673.
YU H B, ZHANG Y L, LI S C, et al. Predicting the dispersal routes of alpine plant Pedicularis longiflora(Orobanchaceae) based on GIS and species distribution models[J]. Chin J Appl Ecol, 2014, 25(6):1669-1673.DOI:10.13287/j.1001-9332.20140415.015.
[12]
田芝平, 姜大膀. 不同分辨率CCSM4对东亚和中国气候模拟能力分析[J]. 大气科学, 2013, 37(1):171-186.
TIAN Z P, JIANG D B. Evaluation of the performance of low-to high-resolution CCSM4 over east Asia and China[J]. Chin J Atmos Sci, 2013, 37(1):171-186.DOI:10.3878/j.issn.1006-9895.2012.12050.
[13]
程晋昕, 段长春, 闫生杰. 基于MaxEnt模型的薄壳山核桃气候适宜性区划[J]. 应用气象学报, 2020, 31(5):631-640.
CHENG J X, DUAN C C, YAN S J. Climate suitability regionalization of pecan based on MaxEnt model[J]. J Appl Meteorol Sci, 2020, 31(5):631-640.DOI:10.11898/1001-7313.20200510.
[14]
郭彦龙, 卫海燕, 路春燕, 等. 气候变化下桃儿七潜在地理分布的预测[J]. 植物生态学报, 2014, 38(3):249-261.
GUO Y L, WEI H Y, LU C Y, et al. Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change[J]. Chin J Plant Ecol, 2014, 38(3):249-261.DOI:10.3724/SP.J.1258.2014.00022.
[15]
邱浩杰, 孙杰杰, 徐达, 等. 末次盛冰期以来红豆树在不同气候变化情景下的分布动态[J]. 生态学报, 2020, 40(9):3016-3026.
QIU H J, SUN J J, XU D, et al. The distribution dynamics of Ormosia hosiei under different climate change scenarios since the Last Glacial Maximum[J]. Chin J Plant Ecol, 2020, 40(9):3016-3026.DOI:10.5846/stxb201904080688.
[16]
陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 113-120.
CHEN Y H, Y W, YIN X J. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6): 113-120.DOI: 10.3969/j.issn.1000-2006.201808045.
[17]
庄鸿飞, 张殷波, 王伟, 等. 基于最大熵模型的不同尺度物种分布概率优化热点分析:以红色木莲为例[J]. 生物多样性, 2018, 26(9):931-940.
ZHUANG H F, ZHANG Y B, WANG W, et al. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model:Manglietia insignis case[J]. Biodivers Sci, 2018, 26(9):931-940.DOI:10.17520/biods.2018059.
[18]
牛若恺, 高润红, 侯艳青, 等. 气候变化下沙冬青适宜分布区预测[J]. 西北林学院学报, 2021, 36(1):102-107.
NIU R K, GAO R H, HOU Y Q, et al. Predictionof the geographic distribution of Ammopiptanthus mongolicus under climate change[J]. J Northwest For Univ, 2021, 36(1):102-107.DOI:10.3969/j.issn.1001-7461.2021.01.14.
[19]
赵晓冏, 巩娟霄, 赵莎莎, 等. 样本量及其空间分布对物种分布模型的影响[J]. 兰州大学学报(自然科学版), 2018, 54(2):208-215.
ZHAO X J, GONG J X, ZHAO S S, et al. Impact of sample size and spatial distribution on species distribution model[J]. J Lanzhou Univ (Nat Sci), 2018, 54(2):208-215.DOI:10.13885/j.issn.0455-2059.2018.02.010.
[20]
ELITH J, PHILLIPS S J, HASTIE T, et al. A statistical explanation of MaxEnt for ecologists[J]. Divers Distributions, 2011, 17(1):43-57.DOI:10.1111/j.1472-4642.2010.00725.x.
[21]
陈新美, 雷渊才, 张雄清, 等. 样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J]. 林业科学, 2012, 48(1):53-59.
CHEN X M, LEI Y C, ZHANG X Q, et al. Effects of sample sizes on accuracy and stability of maximum entropy model in predicting species distribution[J]. Sci Silvae Sin, 2012, 48(1):53-59.
[22]
赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11):3833-3843.
ZHAO R N, HE Q Q, CHU X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. Chin J Appl Ecol, 2019, 30(11):3833-3843.DOI:10.13287/j.1001-9332.201911.020.
[23]
塞依丁·海米提, 努尔巴依·阿布都沙力克, 许仲林, 等. 基于MaxEnt模型对新疆地区的蒙古沙拐枣潜在分布预测及适生性分析[J]. 西北林学院学报, 2018, 33(4):71-77.
Saiyiding·Haimit, Nuerdayi·Abudushalige, XU Z L, et al. Analysis of potential distribution and suitable area of Calligonum mongolicum in Xinjiang based on MaxEnt model[J]. J Northwest For Univ, 2018, 33(4):71-77.DOI:10.3969/j.issn.1001-7461.2018.04.11.
[24]
魏博, 马松梅, 宋佳, 等. 新疆贝母潜在分布区域及生态适宜性预测[J]. 生态学报, 2019, 39(1):228-234.
WEI B, MA S M, SONG J, et al. Prediction of the potential distribution and ecological suitability of Fritillaria walujewii[J]. Chin J Plant Ecol, 2019, 39(1):228-234.DOI:10.5846/stxb20171210222.
[25]
张晓晓. 3个白榆品系耐盐特性比较研究[D]. 泰安: 山东农业大学, 2017.
ZHANG X X. The comparison of salt tolerance among three strains of Ulmus pumila[D]. Tai’an: Shandong Agricultural University, 2017.
[26]
WENT F W. The experimental control of plant growth[J]. Outlook Agric, 1958, 2(1):45.DOI:10.1177/003072705800200109.
[27]
蔡玉成, 马国骅, 王政琦. 不同地理种源白榆的某些生理特性[J]. 宁夏农林科技, 1990, 31(2):20-23.
CAI Y C, MA G H, WANG Z Q. Some physiological characteristics of Ulmus pumila from different geographical provenances[J]. Ningxia J Agric For Sci Technol, 1990, 31(2):20-23.
[28]
叶永昌, 周广胜, 殷晓洁. 1961-2010年内蒙古草原植被分布和生产力变化:基于MaxEnt模型和综合模型的模拟分析[J]. 生态学报, 2016, 36(15):4718-4728.
YE Y C, ZHOU G S, YIN X J. Changes in distribution and productivity of steppe vegetation in Inner Mongolia during 1961 to 2010:analysis based on MaxEnt model and synthetic model[J]. Chin J Plant Ecol, 2016, 36(15):4718-4728.DOI:10.5846/stxb201412302599.
[29]
王爱君, 路东晔, 张国盛, 等. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布[J]. 林业科学, 2021, 57(8):43-55.
WANG A J, LU D Y, ZHANG G S, et al. Potential distribution of Juniperus sabina under climate change in Eurasia continent based on MaxEnt model[J]. Sci Silvae Sin, 2021, 57(8):43-55.DOI:10.11707/j.1001-7488.20210805.
[30]
YAN H Y, FENG L, ZHAO Y F, et al. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt[J]. Glob Ecol Conserv, 2020, 21:e00856.DOI:10.1016/j.gecco.2019.e00856.
[31]
曹雪萍, 王婧如, 鲁松松, 等. 气候变化情景下基于最大熵模型的青海云杉潜在分布格局模拟[J]. 生态学报, 2019, 39(14):5232-5240.
CAO X P, WANG J R, LU S S, et al. Simulation of the potential distribution patterns of Picea crassifolia in climate change scenarios based on the maximum entropy (MaxEnt) model[J]. Chin J Plant Ecol, 2019, 39(14):5232-5240.DOI:10.5846/stxb201809151999.
[32]
张梅, 禄彩丽, 魏喜喜, 等. 基于MaxEnt模型新疆枣潜在适生区预测[J]. 经济林研究, 2020, 38(1):152-161.
ZHANG M, LU C L, WEI X X, et al. Potential suitable area forecast of jujube in Xinjiang based on MaxEnt model[J]. Non Wood For Res, 2020, 38(1):152-161.DOI:10.14067/j.cnki.1003-8981.2020.01.019.
[33]
涂振宇, 勾晓华, 邹松兵. 祁连山北坡青海云杉的潜在分布[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 221-226.
TU Z Y, GOU X H, ZOU S B. Potential distributions of Picea crassifolia on the north slope of Qilian Mountains[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2): 221-226.DOI: 10.12302/j.issn.1000-2006.202012011.
PDF(2686 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/