The application of near-infrared spectroscopy in forestry

WANG Jue, LI Yanjie, CHEN Yicun, GAO Ming, ZHAO Yunxiao, WU Liwen, HUANG Shiqing, ZHANG Yongzhi, ZHU Kangshuo, WANG Yangdong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 237-246.

PDF(1918 KB)
PDF(1918 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 237-246. DOI: 10.12302/j.issn.1000-2006.202203001

The application of near-infrared spectroscopy in forestry

Author information +
History +

Abstract

To obtain reliable forestry data, a large number of samples need to be tested at each stage; however, larger sample sizes can result in increased time, costs, and manpower. Therefore, a fast and efficient detection method to reduce costs and increase forestry study efficiency is needed. Near-infrared spectroscopy (NIR) is a fast, accurate, non-destructive, high-throughput and low-cost analytical technique, which is gradually gaining popularity for use in forestry studies and its potential for the development. The application of NIR spectroscopy for wood property detection can detect wood mechanical characteristics and chemical composition contents with high accuracy. For analyses of economic forestry product quality, NIR spectroscopy is primarily used to reflect indirect and direct traits such as texture, hardness, chemical composition, and content of forestry products; thus, NIR spectroscopy shows good prospects for use in studies of economic forestry product quality and even forest/tree genetic breeding. In addition, NIR spectroscopy can be used in forest tree classification to identify different tree species and species origins, including age information, with better results obtained in multi-species models. Moreover, NIR spectroscopy is useful in the study of forest pests and diseases, as it can effectively distinguish between the normal and diseased plant bodies of multiple species, can be used in bio-quarantine and to predict forest foliage decomposition rates of forest foliage and soil composition. Based on the multiple cross-disciplinary applications of this method, this paper analyzed the factors that influence NIR spectroscopy in practical applications. Intrinsic factors such as sample state and sample set characteristics, and external factors such as pre-processing, wavelength selection, modeling methods, and hardware conditions all have an impact on the stability and accuracy of the final model. It is clear that the introduction of NIR spectroscopy into forestry research has greatly improved the efficiency of forestry sample detection, achieved green and non-destructive high-throughput detection, and has excellent adaptability to rapid measurement of forest land sites and forest genetic breeding; thus, NIR spectroscopy plays a significant role in promoting forestry development.

Key words

near-infrared spectroscopy / forestry / economic forest / rapid prediction / non-destructive testing

Cite this article

Download Citations
WANG Jue , LI Yanjie , CHEN Yicun , et al . The application of near-infrared spectroscopy in forestry[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 237-246 https://doi.org/10.12302/j.issn.1000-2006.202203001

References

[1]
YU H Q, ZHAO R J, FU F, et al. Use of near infrared spectroscopy to measure mechanical properties of solid wood[J]. Chinses Forestry Science and Technology, 2007, 6(2). DOI: 10.1007/s00226-003-0213-5.
[2]
ASTM. Standard practice for near infrared qualitative analysis[S]. West Conshohocken, PA: ASTM International, 2016.
[3]
STARK E, LUCHTER K, MARGOSHES M. Near-infrared analysis (NIRA): a technology for quantitative and qualitative analysis[J]. Applied Spectroscopy Reviews, 1986, 22(4): 335-399. DOI: 10.1080/05704928608060440.
[4]
MARTEN G C, BRINK G E, BUXTON D R, et al. Near infrared reflectance spectroscopy analysis of forage quality in four legume species[J]. Crop Science, 1984, 24(6): 1179-1182. DOI: 10.2135/cropsci1984.0011183X002400060040x.
[5]
SIESLER H W, OZAKI Y, KAWATA S, et al. Near infrared spectroscopy: principles, instruments applications[M]. Weinheim, Germany: Wiley-VCH:2002.
[6]
陆婉珍. 现代近红外光谱分析技术[M]. 北京: 中国石化出版社, 2007.
LU W Z. Modern near-infrared spectroscopy analytical technology[M]. Beijing: China Petrochemical Press, 2007.
[7]
CONWAY J M, NORRIS K H, BODWELL C E. A new approach for the estimation of body composition: infrared interactance[J]. American Journal of Clinical Nutrition, 1984, 40(6): 1123-1130. DOI: 10.1093/ajcn/40.6.1123.
[8]
OSBORNE B G, FEARN T. Near infrared spectroscopy in food analysis[M]. UK: Longman, 1998.
[9]
BATTEN G D. An appreciation of the contribution of NIR to agriculture[J]. Journal of Near Infrared Spectroscopy, 1998, 6(1): 105-114. DOI: 10.1255/jnirs.127.
[10]
杨忠, 江泽慧, 费本华. 近红外光谱技术及其在木材科学中的应用[J]. 林业科学, 2005, 41(4): 177-183.
YANG Z, JIANG Z H, FEI B H. Application of near infrared (NIR) spectroscopy to wood science[J]. Scientia Silvae Sinicae, 2005, 41(4): 177-183.
[11]
OZAKI Y, HUCK C W, BEC K B. Near-IR spectroscopy and its applications[J]. Molecular and Laser Spectroscopy: Advances and Applications, 2018: 11-38. DOI: 10.1016/B978-0-12-849883-5.00002-4.
[12]
LU B, DAO P D, LIU J, et al. Recent advances of hyperspectral imaging technology and applications in agriculture[J]. Remote Sensing, 2020, 12(16): 2659. DOI: 10.3390/rs12162659.
[13]
LI Y J, ALTANER C M. Effects of variable selection and processing of NIR and ATR-IR spectra on the prediction of extractive content in Eucalyptus bosistoana heartwood[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 111-117. DOI: 10.1016/j.saa.2019.01.060.
[14]
BEC K B, GRABSKA J, HUCK C W. Near-infrared spectroscopy in bio-applications[J]. Molecules, 2020, 25, 2948. DOI: 10.3390/molecules25122948.
[15]
BURNS D A, CIURCZAK E W. Handbook of near-infrared analysis[M]. 2nd ed. New York: Marcel Dekker, INC, 2001, p588.
[16]
WRIGHT J A, BIRKETT M D, GAMBINO M J T. Prediction of pulp yield and cellulose content from wood samples using near infrared reflectance spectroscopy[J]. Tappi Journal, 1990, 73(8): 164-166.
[17]
HOFFMEYER P, PEDERSEN J G. Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy[J]. Holz als Roh-und werkstoff, 1995, 53(3): 165-170. DOI: 10.1007/BF02716418.
[18]
莫军前, 张文博. 基于近红外光谱技术的热处理竹材物理力学性能[J]. 林业工程学报, 2019, 4(1):32-38.
MO J Q, ZHANG W B. Physical and mechanical properties of heat-treated bamboo using near infrared reflectance spectroscopy[J]. J Fore Eng, 2019, 4(1):32-38.DOI:10.13360/j.issn.2096-1359.2019.01.005.
[19]
丁丽, 相玉红, 黄安民, 等. BP神经网络与近红外光谱定量预测杉木中的综纤维素、木质素、微纤丝角[J]. 光谱学与光谱分析`, 2009(7): 1784-1787.
DING L, XIANG Y H, HUANG A M, et al. Quantitative prediction of holocellulose, lignin, and microfibril angles in Chinese fir using BP neural network and near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2009(7): 1784-1787. DOI: 10.3964/j.issn.1000-0593(2009)07-1784-04.
[20]
刘镇波, 孙凤亮, WANG X M, 等. 基于近红外光谱法的人工林杨木木质素含量预测[J]. 南京林业大学学报(自然科学版), 2013, 37(6): 121-126.
LIU Z B, SUN F L, WANG X M, et al. Prediction of lignin content of plantation poplar using near infrared spectroscopy method[J]. J Nanjing Fore Univ (Nat Sci Ed), 2013, 37(6): 121-126.DOI: 10.3969/j.issn.1000-2006.2013.06.024.
[21]
胡云超, 王红鸿, 熊智新, 等. 基于SWSRA-UVE算法的纸浆材综纤维素近红外预测模型共享研究[J]. 林业工程学报, 2023, 8(2):101-108.
HU Y C, WANG H H, XIONG Z X, et al. Research on near infrared prediction model sharing of pulpwood holocellulose based on SWSRA-UVE algorithm[J]. J Fore Eng, 2023, 8(2):101-108.DOI:10.13360/j.issn.2096-1359.202210001.
[22]
LI Y J, ALTANER C. Calibration of near infrared spectroscopy (NIRS) data of three Eucalyptus species with extractive contents determined by ASE extraction for rapid identification of species and high extractive contents[J]. Holzforschung, 2019, 73(6): 537-545. DOI: 10.1515/hf-2018-0166.
[23]
ZHANG Y Z, LI Y X, ZHANG H F, et al. Modeling wood density of larch by near-infrared spectrometry and support vector machine[C]// Applied Mechanics and Materials. Stafa: Trans Tech Publications Ltd, 2011, 55: 433-438.
[24]
谭念, 王学顺, 黄安民, 等. 基于灰狼算法SVM的NIR杉木密度预测[J]. 林业科学, 2018, 54(12): 137-141.
TAN N, WANG X S, HUANG A M, et al. Wood density prediction of Cunninghamia lanceolata based on gray wolf algorithm SVM and NIR[J]. Scientia Silvae Sinicae, 2018, 54(12): 137-141. DOI: 10. 11707/j. 1001-7488. 20181215.
[25]
YU L, LIANG Y L, ZHANG Y Z, et al. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares[J]. Journal of Forestry Research, 2020, 31(3): 1053-1060. DOI: 10.1007/s11676-019-01031-7.
[26]
MA T, INAGAKI T, TSUCHIKAWA S. Calibration of SilviScan data of Cryptomeria japonica wood concerning density and microfibril angles with NIR hyperspectral imaging with high spatial resolution[J]. Holzforschung, 2017, 71(4): 341-347. DOI: 10.1515/hf-2016-0153.
[27]
王钰. 2018年我国林业产业总产值7.33万亿元[EB/OL].
WANG Y. The total output value of my country’s forestry industry in 2018 was 7.33 trillion yuan[EB/OL].
[28]
胡逸磊, 姜洪喆, 周宏平, 等. 水果成熟度近红外光谱及高光谱成像无损检测研究进展[J]. 食品工业科技, 2021, 42(20):377-383.
HU Y L, JIANG H Z, ZHOU H P, et al. Research progress on nondestructive detection of fruit maturity by near infrared spectroscopy and hyperspectral imaging[J]. Science and Technology of Food Industry, 2021, 42(20):377-383. DOI: 10.13386/j.issn1002-0306.2020070074.
[29]
ARAÚJO C S, MACEDO L L, VIMERCATI W C, et al. Determination of pH and acidity in green coffee using near-infrared spectroscopy and multivariate regression[J]. Journal of the Science of Food and Agriculture, 2020, 100(6): 2488-2493. DOI: 10.1002/jsfa.10270.
[30]
王丹, 鲁晓翔, 张鹏, 等. 可见/近红外漫反射光谱无损检测甜柿果实硬度[J]. 食品发酵工业, 2013, 39(5): 180-184.
WANG D, LU X X, ZHANG P, et al. Nondestructive detection of persimmon fruit firmness by vis/near infrared diffuse reflectance spectroscopy[J]. Food and Fermentation Industries, 2013, 39(5): 180-184. DOI: 10.13995/j.cnki.11-1802/ts.2013.05.013.
[31]
李玉荣, 刘英, 汪力. 多信息融合的马尾松苗木静态指标检测方法[J]. 林业工程学报, 2019, 4(5):129-133.
LI Y R, LIU Y, WANG L. Study on static index detection method of masson pine seedlings based on multi-information fusion[J]. J Fore Eng, 2019, 4(5):129-133.DOI:10.13360/j.issn.2096-1359.2019.05.018.
[32]
RÉBUFA C, PANY I, BOMBARDA I. NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: Prediction of minerals, protein and moisture contents[J]. Food chemistry, 2018, 261: 311-321. DOI: 10.1016/j.foodchem.2018.04.066.
[33]
李水芳, 付红军, 马强, 等. 构建三种木本油料植物种子含油率NIR通用模型的可行性研究[J]. 林产化学与工业, 2017, 37(4): 137-142.
LI S F, FU H J, MA Q, et al. Universal models for determining oil contents in three woody oil plant seeds by using near infrared spectroscopy: a feasibility study[J]. Chemistry and Industry of Forest Products, 2017, 37(4): 137-142. DOI: 10. 3969/j. issn. 0253-2417. 2017. 04. 020.
[34]
LEÓN L, GARRIDO-VARO A, DOWNEY G. Parent and harvest year effects on near-infrared reflectance spectroscopic analysis of olive (Olea europaea L.) fruit traits[J]. Journal of Agricultural and Food Cchemistry, 2004, 52(16): 4957-4962. DOI: 10.1021/jf0496853.
[35]
TIGABU M, ODÉN P C. Discrimination of viable and empty seeds of Pinus patula Schiede & Deppe with near-infrared spectroscopy[J]. New Forests, 2003, 25(3): 163-176. DOI: 10.1023/A:1022916615477.
[36]
ESPINOZA J A, HODGE G R, DVORAK W S. The potential use of near infrared spectroscopy to discriminate between different pine species and their hybrids[J]. Journal of Near Infrared Spectroscopy, 2012, 20(4): 437-447.
[37]
NISGOSKI S, SCHARDOSIN F Z, BATISTA F R R, et al. Potential use of NIR spectroscopy to identify Cryptomeria japonica varieties from southern Brazil[J]. Wood Science and Technology, 2016, 50(1): 71-80. DOI: 10.1007/s00226-015-0783-z.
[38]
骆立, 徐兆军, 王晓羽. 基于支持向量机的木材树种识别模型[J]. 林业工程学报, 2022, 7(4):122-127.
LUO L, XU Z J, WANG X Y, et al. Identification of wood species using support vector machine[J]. J Fore Eng, 2022, 7(4):122-127.DOI:10.13360/j.issn.2096-1359.202111006.
[39]
汪紫阳, 尹世逵, 李颖, 等. 基于可见/近红外光谱识别东北地区常见木材[J]. 浙江农林大学学报, 2019, 36(1): 162-169.
WANG Z Y, YIN S K, LI Y, et al. Identification of common wood species in northeast China using Vis/NIR spectroscopy[J]. Journal of Zhejiang A & F University, 2019, 36(1): 162-169. DOI: 10.11833/j.issn.2095-0756.2019.01.020.
[40]
杨金勇, 李学春, 黄安民, 等. 基于主成分分析与 Fisher 判别的 NIR 木材识别[J]. 东北林业大学学报, 2013, 41(12): 132-134.
YANG J Y, LI X C, HUANG A M, et al. Timber NIR identification based on the principal component analysis and fisher discriminant analysis[J]. Journal of Northeast Forestry University, 2013, 41(12): 132-134. DOI: 10.13759/j.cnki.dlxb.2013.12.001.
[41]
杨忠, 江泽慧, 吕斌. 红木的近红外光谱分析[J]. 光谱学与光谱分析, 2012, 32(9): 2405-2408.
YANG Z, JIANG Z H, LV B. Near-infrared spectroscopy analysis of rosewood[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2405-2408. DOI: 10.3964/j.issn.1000-0593(2012)09-2405-04.
[42]
RUANO A, ZITEK A, HINTERSTOISSER B, et al. NIR hyperspectral imaging (NIR-HI) and μXRD for determination of the transition between juvenile and mature wood of Pinus sylvestris L[J]. Holzforschung, 2019, 73(7): 621-627. DOI: 10.1515/hf-2018-0186.
[43]
LUCAS DOMINGOS DA SILVA A, ALVES FILHO E G, SILVA L M A, et al. Near infrared spectroscopy to rapid assess the rubber tree clone and the influence of maturation and disease at the leaves[J]. Microchemical Journal, 2021, 168: 106478. DOI: 10.1016/j.microc.2021.106478.
[44]
XU F, HAO Z, HUANG L, et al. Comparative identification of Citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy[J]. Applied Physics B, 2020, 126(3): 1-7. DOI: 10.1007/s00340-020-7392-8.
[45]
王震, 张晓丽, 安树杰. 松材线虫病危害的马尾松林木光谱特征分析[J]. 遥感技术与应用, 2007(3): 367-370.
WANG Z, ZHANG X L, AN S J. Analysis of spectral characteristics of masson pine trees damaged by pine wood nematode[J]. Remotesensing Technology and Application, 2007(3): 367-370.
[46]
黄明祥, 龚建华, 李顺, 等. 松材线虫病害高光谱时序与敏感特征研究[J]. 遥感技术与应用, 2012, 27(6): 954-960.
HUANG M X, GONG J H, LI S, et al. Study on pine wilt disease hyper-spectral time series and sensitive features[J]. Remote Sensing Technology and Application, 2012, 27(6):954-960.
[47]
马跃, 吕全, 赵相涛, 等. 接种不同浓度松材线虫的黑松光谱学特征分析[J]. 山东农业科学, 2012, 44(11): 1216.
MA Y, LV Q, ZHAO X T, et al. Analysis of spectral characteristics of Pinus thunbergii inoculated with pine wood nematode[J]. Shandong Agricultural Sciences, 2012, 44(11): 1216. DOI: 10.14083/j.issn.1001-4942.2012.11.012.
[48]
GILLON D, JOFFRE R, DARDENNE P. Predicting the stage of decay of decomposing leaves by near infrared reflectance spectroscopy[J]. Canadian Journal of Forest Research, 1993, 23(12): 2552-2559.
[49]
CHODAK M, LUDWIG B, KHANNA P, et al. Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(1): 27-33. DOI: 10.1002/1522-2624(200202) 165:1<27::AID-JPLN27>3.0.CO;2-A.
[50]
CONFORTI M, MATTEUCCI G, BUTTAFUOCO G. Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties[J]. Journal of Soils and Sediments, 2018, 18(3): 1009-1019.
[51]
VENDRAME P R S, MARCHÃO R L, BRUNET D, et al. The potential of NIR spectroscopy to predict soil texture and mineralogy in Cerrado Latosols[J]. European Journal of Soil Science, 2012, 63(5): 743-753.
[52]
SCHWANNINGER M, RODRIGUES J C, FACKLER K. A review of band assignments in near infrared spectra of wood and wood components[J]. Journal of Near Infrared Spectroscopy, 2011, 19(5): 287-308.
[53]
江泽慧, 黄安民. 木材中的水分及其近红外光谱分析[J]. 光谱学与光谱分析, 2006(8): 1464-1468.
JIANG Z H, HUANG A M. Moisture in wood and its near-infrared spectral analysis[J]. Spectroscopy and Spectral Analysis, 2006(8): 1464-1468.
[54]
NISGOSKI S, CARNEIRO M E, BOLZON DE MUÑIZ G I. Influencia de la granulometría de la muestra en la discriminación de especies de Salix por infrarrojo cercano[J]. Maderas Ciencia Tecnología, 2015, 17(1): 195-204. DOI: 10.4067/S0718-221X2015005000019.
[55]
BRAGA J W B, PASTORE T C M, CORADIN V T R, et al. The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (cites appendix II)[J]. Iawa Journal, 2011, 32(2): 285-296.
[56]
赵荣军, 邢新婷, 吕建雄, 等. 粗皮桉木材力学性质的近红外光谱方法预测[J]. 林业科学, 2012, 48(10): 106-111.
ZHAO R J, XING X T, LV J X, et al. Estimation of wood mechanical properties of eucalyptus pellita by near infrared spectroscopy[J]. Scientia Silvae Sinicae, 2012, 48(10): 106-111.
[57]
余雁, 江泽慧, 王戈, 等. 采谱方式对竹材气干密度近红外预测模型精度的影响[J]. 北京林业大学学报, 2007, 29(4): 80-83.
YU Y, JIANG Z H, WANG G, et al. 2007. Effects of sample surface on the accuracy of near infrared predictive model of air dried density of bamboo[J]. J Beijing For Uni, 2007, 29(4): 80-83. DOI: 10.13332/j.1000-1522.2007.04.019.
[58]
BEC K B, GRABSKA J, HUCK C W. Biomolecular and bioanalytical applications of infrared spectroscopy: a review[J]. Analytica Chimica Acta, 2020, 1133: 150-177. DOI: 10.1016/j.aca.2020.04.015.
[59]
SHI G, CAO J, LI C, et al. Compression strength prediction of Xylosma racemosum using a transfer learning system based on near-infrared spectral data[J]. Journal of Forestry Research, 2020, 31(3): 1061-1069. DOI: 10.1007/s11676-019-01052-2.
[60]
高升, 王巧华, 付丹丹, 等. 红提糖度和硬度的高光谱成像无损检测[J]. 光学学报, 2019, 39(10): 1030004.
GAO S, WANG Q H, FU D D, et al. Nondestructive detection of sugar content and firmness of red globe grape by hypersrectral imaging[J]. Acta Optica Sinica, 2019, 39(10): 1030004. DOI: 10.3788/AOS201939.1030004.
[61]
褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528.
CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J]. Progress in chemistry, 2004, 16(4): 528.
[62]
BARNES R J, DHANOA M S, LISTER S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Applied spectroscopy, 1989, 43(5): 772-777. DOI: 10.1366/0003702894202201.
[63]
LI Y J, DONG X, SUN Y, et al. An efficient method to reduce grain angle influence on NIR spectra for predicting extractives content from heartwood stem cores of Toona sinensis[J]. Plant methods, 2020, 16: 1-9. DOI: 10.1186/s13007-020-00623-3.
[64]
KELLEY S S, RIALS T G, SNELL R, et al. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood[J]. Wood Science and Technology, 2004, 38(4): 257-276. DOI: 10.1007/s00226-003-0213-5.
[65]
袁天军, 王家俊, 者为, 等. 近红外光谱法的应用及相关标准综述[J]. 中国农学通报, 2013, 29(20): 190-196.
YUAN T J, WANG J J, ZHE W, et al. The Review of application and standards of near infrared spectrometry[J]. Chinese Agricultural Science Bulletin, 2013, 29(20): 190-196.
PDF(1918 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/