JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3): 237-246.doi: 10.12302/j.issn.1000-2006.202203001
WANG Jue1(), LI Yanjie2, CHEN Yicun2, GAO Ming2, ZHAO Yunxiao2, WU Liwen2, HUANG Shiqing3, ZHANG Yongzhi3, ZHU Kangshuo3, WANG Yangdong1,2,*(
)
Received:
2022-03-01
Revised:
2022-06-19
Online:
2023-05-30
Published:
2023-05-25
Contact:
WANG Yangdong
E-mail:wangjue72999@163.com;wyd11111@126.com
CLC Number:
WANG Jue, LI Yanjie, CHEN Yicun, GAO Ming, ZHAO Yunxiao, WU Liwen, HUANG Shiqing, ZHANG Yongzhi, ZHU Kangshuo, WANG Yangdong. The application of near-infrared spectroscopy in forestry[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 237-246.
Table 1
The comparison of near-infrared spectroscopy technology and competitive technology"
对比项目 comparison item | 近红外光谱 near infrared spectroscopy | 红外光谱 infrared spectroscopy | 拉曼光谱 raman spectroscopy |
---|---|---|---|
波长范围 wavelength range | 780~2 526 mm | 2 500~25 000 mm | 2 500~200 000 mm |
激发形式excitation mechanism | 吸收 | 吸收 | 非弹性光子散射 |
采样模式 acquisition mode | 漫反射,透射 | 漫反射,透射,衰减全反射 | 散射 |
采样深度sampling depth | 深 | 浅 | 视样品透光度及波长而定 |
仪器复杂度instrument complexity | 低 | 中 | 高 |
化学特异性chemical specificity | 低 | 高 | 高 |
样本要求sample requirements | 宽泛,要求少 | 不含游离水 | 均一,不含游离水 |
主要缺点main problems | 灵敏度较低,光谱重合, 解释困难 | 大气信号干扰, 不适用于潮湿样品 | 自发荧光干扰, 激光可能破坏分子结构 |
Table 2
The specific applications of near-infrared spectroscopy technology in forestry"
样品 sample | 检测内容 test content | 预处理/建模方法 pretreatment / modeling method | 文献编号 reference No. |
---|---|---|---|
综纤维素、木质素 | Savitzky-Golay平滑、二阶导数等+BPNN | [ | |
日本柳杉Cryptomeria japonica | 微纤丝角 | 一阶导数+PLSR | [ |
种源 | Savitzky-Golay平滑、SNV、MSC+PCA | [ | |
桉木 Eucalyptus bosistoana | 心材内含物 | 二阶导数、一阶导数、SNV+PLSR | [ |
落叶松 Larix gmelinii | 木材密度 | 径向基函数+SVR | [ |
树种鉴别 | 一阶导数、二阶导数+PCR、Fisher判别 | [ | |
杉木 Cunninghamia lanceolata | 密度 | PCA+多元线性回归/(GWO-)SVR | [ |
蒙古栎 Quercus mongolica | 机械性能 | Savitzky-Golay卷积平滑、MSC、一阶导数等+ (CLE-)PLSR | [ |
咖啡 Coffea arabica | pH、酸度 | 一阶导数、SNV+PLSR | [ |
甜柿 Diospyros kaki | 果皮强度、脆性 | MSC、一阶微分+改进PLSR | [ |
果肉平均硬度 | SNV、一阶微分等+改进PLSR | ||
辣木 Moringa oleifera | 蛋白质 | MSC、BC、PCA+PLSR | [ |
矿物质 | MSC、BC、Savitzky-Golay卷积平滑等+PLSR | ||
油桐Vernicia fordii 油茶Camellia oleifera 核桃Juglans regia | 含油率 | 均值中心化、一阶导数、二阶导数等+PLSR/RBFNN | [ |
橄榄 Olea europaea | 水、油、油酸、亚油酸 | 二阶导数+PLSR | [ |
红松Pinus koraiensis | 种子活性、虫害 | 正交信号校正+PLSR | [ |
马尾松Pinus massoniana 樟子松P. sylvestris var. mongolica | 树种鉴别 | 一阶导数、二阶导数+PCR、Fisher判别 | [ |
欧洲赤松P. sylvestris | 树龄、早晚材 | PCA+PLS-DA | [ |
橡胶Hevea brasiliensis | 病叶与正常叶 | MSC+PCA | [ |
柑橘Citrus sinensis | 黄龙病 | PCA+MLPNN | [ |
[1] | YU H Q, ZHAO R J, FU F, et al. Use of near infrared spectroscopy to measure mechanical properties of solid wood[J]. Chinses Forestry Science and Technology, 2007, 6(2). DOI: 10.1007/s00226-003-0213-5. |
[2] | ASTM. Standard practice for near infrared qualitative analysis[S]. West Conshohocken, PA: ASTM International, 2016. |
[3] | STARK E, LUCHTER K, MARGOSHES M. Near-infrared analysis (NIRA): a technology for quantitative and qualitative analysis[J]. Applied Spectroscopy Reviews, 1986, 22(4): 335-399. DOI: 10.1080/05704928608060440. |
[4] | MARTEN G C, BRINK G E, BUXTON D R, et al. Near infrared reflectance spectroscopy analysis of forage quality in four legume species[J]. Crop Science, 1984, 24(6): 1179-1182. DOI: 10.2135/cropsci1984.0011183X002400060040x. |
[5] | SIESLER H W, OZAKI Y, KAWATA S, et al. Near infrared spectroscopy: principles, instruments applications[M]. Weinheim, Germany: Wiley-VCH:2002. |
[6] | 陆婉珍. 现代近红外光谱分析技术[M]. 北京: 中国石化出版社, 2007. |
LU W Z. Modern near-infrared spectroscopy analytical technology[M]. Beijing: China Petrochemical Press, 2007. | |
[7] | CONWAY J M, NORRIS K H, BODWELL C E. A new approach for the estimation of body composition: infrared interactance[J]. American Journal of Clinical Nutrition, 1984, 40(6): 1123-1130. DOI: 10.1093/ajcn/40.6.1123. |
[8] | OSBORNE B G, FEARN T. Near infrared spectroscopy in food analysis[M]. UK: Longman, 1998. |
[9] | BATTEN G D. An appreciation of the contribution of NIR to agriculture[J]. Journal of Near Infrared Spectroscopy, 1998, 6(1): 105-114. DOI: 10.1255/jnirs.127. |
[10] | 杨忠, 江泽慧, 费本华. 近红外光谱技术及其在木材科学中的应用[J]. 林业科学, 2005, 41(4): 177-183. |
YANG Z, JIANG Z H, FEI B H. Application of near infrared (NIR) spectroscopy to wood science[J]. Scientia Silvae Sinicae, 2005, 41(4): 177-183. | |
[11] | OZAKI Y, HUCK C W, BEC K B. Near-IR spectroscopy and its applications[J]. Molecular and Laser Spectroscopy: Advances and Applications, 2018: 11-38. DOI: 10.1016/B978-0-12-849883-5.00002-4. |
[12] | LU B, DAO P D, LIU J, et al. Recent advances of hyperspectral imaging technology and applications in agriculture[J]. Remote Sensing, 2020, 12(16): 2659. DOI: 10.3390/rs12162659. |
[13] | LI Y J, ALTANER C M. Effects of variable selection and processing of NIR and ATR-IR spectra on the prediction of extractive content in Eucalyptus bosistoana heartwood[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 111-117. DOI: 10.1016/j.saa.2019.01.060. |
[14] | BEC K B, GRABSKA J, HUCK C W. Near-infrared spectroscopy in bio-applications[J]. Molecules, 2020, 25, 2948. DOI: 10.3390/molecules25122948. |
[15] | BURNS D A, CIURCZAK E W. Handbook of near-infrared analysis[M]. 2nd ed. New York: Marcel Dekker, INC, 2001, p588. |
[16] | WRIGHT J A, BIRKETT M D, GAMBINO M J T. Prediction of pulp yield and cellulose content from wood samples using near infrared reflectance spectroscopy[J]. Tappi Journal, 1990, 73(8): 164-166. |
[17] | HOFFMEYER P, PEDERSEN J G. Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy[J]. Holz als Roh-und werkstoff, 1995, 53(3): 165-170. DOI: 10.1007/BF02716418. |
[18] | 莫军前, 张文博. 基于近红外光谱技术的热处理竹材物理力学性能[J]. 林业工程学报, 2019, 4(1):32-38. |
MO J Q, ZHANG W B. Physical and mechanical properties of heat-treated bamboo using near infrared reflectance spectroscopy[J]. J Fore Eng, 2019, 4(1):32-38.DOI:10.13360/j.issn.2096-1359.2019.01.005. | |
[19] | 丁丽, 相玉红, 黄安民, 等. BP神经网络与近红外光谱定量预测杉木中的综纤维素、木质素、微纤丝角[J]. 光谱学与光谱分析`, 2009(7): 1784-1787. |
DING L, XIANG Y H, HUANG A M, et al. Quantitative prediction of holocellulose, lignin, and microfibril angles in Chinese fir using BP neural network and near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2009(7): 1784-1787. DOI: 10.3964/j.issn.1000-0593(2009)07-1784-04. | |
[20] | 刘镇波, 孙凤亮, WANG X M, 等. 基于近红外光谱法的人工林杨木木质素含量预测[J]. 南京林业大学学报(自然科学版), 2013, 37(6): 121-126. |
LIU Z B, SUN F L, WANG X M, et al. Prediction of lignin content of plantation poplar using near infrared spectroscopy method[J]. J Nanjing Fore Univ (Nat Sci Ed), 2013, 37(6): 121-126.DOI: 10.3969/j.issn.1000-2006.2013.06.024. | |
[21] | 胡云超, 王红鸿, 熊智新, 等. 基于SWSRA-UVE算法的纸浆材综纤维素近红外预测模型共享研究[J]. 林业工程学报, 2023, 8(2):101-108. |
HU Y C, WANG H H, XIONG Z X, et al. Research on near infrared prediction model sharing of pulpwood holocellulose based on SWSRA-UVE algorithm[J]. J Fore Eng, 2023, 8(2):101-108.DOI:10.13360/j.issn.2096-1359.202210001. | |
[22] | LI Y J, ALTANER C. Calibration of near infrared spectroscopy (NIRS) data of three Eucalyptus species with extractive contents determined by ASE extraction for rapid identification of species and high extractive contents[J]. Holzforschung, 2019, 73(6): 537-545. DOI: 10.1515/hf-2018-0166. |
[23] | ZHANG Y Z, LI Y X, ZHANG H F, et al. Modeling wood density of larch by near-infrared spectrometry and support vector machine[C]// Applied Mechanics and Materials. Stafa: Trans Tech Publications Ltd, 2011, 55: 433-438. |
[24] | 谭念, 王学顺, 黄安民, 等. 基于灰狼算法SVM的NIR杉木密度预测[J]. 林业科学, 2018, 54(12): 137-141. |
TAN N, WANG X S, HUANG A M, et al. Wood density prediction of Cunninghamia lanceolata based on gray wolf algorithm SVM and NIR[J]. Scientia Silvae Sinicae, 2018, 54(12): 137-141. DOI: 10. 11707/j. 1001-7488. 20181215. | |
[25] | YU L, LIANG Y L, ZHANG Y Z, et al. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares[J]. Journal of Forestry Research, 2020, 31(3): 1053-1060. DOI: 10.1007/s11676-019-01031-7. |
[26] | MA T, INAGAKI T, TSUCHIKAWA S. Calibration of SilviScan data of Cryptomeria japonica wood concerning density and microfibril angles with NIR hyperspectral imaging with high spatial resolution[J]. Holzforschung, 2017, 71(4): 341-347. DOI: 10.1515/hf-2016-0153. |
[27] | 王钰. 2018年我国林业产业总产值7.33万亿元[EB/OL]. |
WANG Y. The total output value of my country’s forestry industry in 2018 was 7.33 trillion yuan[EB/OL]. . | |
[28] | 胡逸磊, 姜洪喆, 周宏平, 等. 水果成熟度近红外光谱及高光谱成像无损检测研究进展[J]. 食品工业科技, 2021, 42(20):377-383. |
HU Y L, JIANG H Z, ZHOU H P, et al. Research progress on nondestructive detection of fruit maturity by near infrared spectroscopy and hyperspectral imaging[J]. Science and Technology of Food Industry, 2021, 42(20):377-383. DOI: 10.13386/j.issn1002-0306.2020070074. | |
[29] | ARAÚJO C S, MACEDO L L, VIMERCATI W C, et al. Determination of pH and acidity in green coffee using near-infrared spectroscopy and multivariate regression[J]. Journal of the Science of Food and Agriculture, 2020, 100(6): 2488-2493. DOI: 10.1002/jsfa.10270. |
[30] | 王丹, 鲁晓翔, 张鹏, 等. 可见/近红外漫反射光谱无损检测甜柿果实硬度[J]. 食品发酵工业, 2013, 39(5): 180-184. |
WANG D, LU X X, ZHANG P, et al. Nondestructive detection of persimmon fruit firmness by vis/near infrared diffuse reflectance spectroscopy[J]. Food and Fermentation Industries, 2013, 39(5): 180-184. DOI: 10.13995/j.cnki.11-1802/ts.2013.05.013. | |
[31] | 李玉荣, 刘英, 汪力. 多信息融合的马尾松苗木静态指标检测方法[J]. 林业工程学报, 2019, 4(5):129-133. |
LI Y R, LIU Y, WANG L. Study on static index detection method of masson pine seedlings based on multi-information fusion[J]. J Fore Eng, 2019, 4(5):129-133.DOI:10.13360/j.issn.2096-1359.2019.05.018. | |
[32] | RÉBUFA C, PANY I, BOMBARDA I. NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: Prediction of minerals, protein and moisture contents[J]. Food chemistry, 2018, 261: 311-321. DOI: 10.1016/j.foodchem.2018.04.066. |
[33] | 李水芳, 付红军, 马强, 等. 构建三种木本油料植物种子含油率NIR通用模型的可行性研究[J]. 林产化学与工业, 2017, 37(4): 137-142. |
LI S F, FU H J, MA Q, et al. Universal models for determining oil contents in three woody oil plant seeds by using near infrared spectroscopy: a feasibility study[J]. Chemistry and Industry of Forest Products, 2017, 37(4): 137-142. DOI: 10. 3969/j. issn. 0253-2417. 2017. 04. 020. | |
[34] | LEÓN L, GARRIDO-VARO A, DOWNEY G. Parent and harvest year effects on near-infrared reflectance spectroscopic analysis of olive (Olea europaea L.) fruit traits[J]. Journal of Agricultural and Food Cchemistry, 2004, 52(16): 4957-4962. DOI: 10.1021/jf0496853. |
[35] | TIGABU M, ODÉN P C. Discrimination of viable and empty seeds of Pinus patula Schiede & Deppe with near-infrared spectroscopy[J]. New Forests, 2003, 25(3): 163-176. DOI: 10.1023/A:1022916615477. |
[36] | ESPINOZA J A, HODGE G R, DVORAK W S. The potential use of near infrared spectroscopy to discriminate between different pine species and their hybrids[J]. Journal of Near Infrared Spectroscopy, 2012, 20(4): 437-447. |
[37] | NISGOSKI S, SCHARDOSIN F Z, BATISTA F R R, et al. Potential use of NIR spectroscopy to identify Cryptomeria japonica varieties from southern Brazil[J]. Wood Science and Technology, 2016, 50(1): 71-80. DOI: 10.1007/s00226-015-0783-z. |
[38] | 骆立, 徐兆军, 王晓羽. 基于支持向量机的木材树种识别模型[J]. 林业工程学报, 2022, 7(4):122-127. |
LUO L, XU Z J, WANG X Y, et al. Identification of wood species using support vector machine[J]. J Fore Eng, 2022, 7(4):122-127.DOI:10.13360/j.issn.2096-1359.202111006. | |
[39] | 汪紫阳, 尹世逵, 李颖, 等. 基于可见/近红外光谱识别东北地区常见木材[J]. 浙江农林大学学报, 2019, 36(1): 162-169. |
WANG Z Y, YIN S K, LI Y, et al. Identification of common wood species in northeast China using Vis/NIR spectroscopy[J]. Journal of Zhejiang A & F University, 2019, 36(1): 162-169. DOI: 10.11833/j.issn.2095-0756.2019.01.020. | |
[40] | 杨金勇, 李学春, 黄安民, 等. 基于主成分分析与 Fisher 判别的 NIR 木材识别[J]. 东北林业大学学报, 2013, 41(12): 132-134. |
YANG J Y, LI X C, HUANG A M, et al. Timber NIR identification based on the principal component analysis and fisher discriminant analysis[J]. Journal of Northeast Forestry University, 2013, 41(12): 132-134. DOI: 10.13759/j.cnki.dlxb.2013.12.001. | |
[41] | 杨忠, 江泽慧, 吕斌. 红木的近红外光谱分析[J]. 光谱学与光谱分析, 2012, 32(9): 2405-2408. |
YANG Z, JIANG Z H, LV B. Near-infrared spectroscopy analysis of rosewood[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2405-2408. DOI: 10.3964/j.issn.1000-0593(2012)09-2405-04. | |
[42] | RUANO A, ZITEK A, HINTERSTOISSER B, et al. NIR hyperspectral imaging (NIR-HI) and μXRD for determination of the transition between juvenile and mature wood of Pinus sylvestris L[J]. Holzforschung, 2019, 73(7): 621-627. DOI: 10.1515/hf-2018-0186. |
[43] | LUCAS DOMINGOS DA SILVA A, ALVES FILHO E G, SILVA L M A, et al. Near infrared spectroscopy to rapid assess the rubber tree clone and the influence of maturation and disease at the leaves[J]. Microchemical Journal, 2021, 168: 106478. DOI: 10.1016/j.microc.2021.106478. |
[44] | XU F, HAO Z, HUANG L, et al. Comparative identification of Citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy[J]. Applied Physics B, 2020, 126(3): 1-7. DOI: 10.1007/s00340-020-7392-8. |
[45] | 王震, 张晓丽, 安树杰. 松材线虫病危害的马尾松林木光谱特征分析[J]. 遥感技术与应用, 2007(3): 367-370. |
WANG Z, ZHANG X L, AN S J. Analysis of spectral characteristics of masson pine trees damaged by pine wood nematode[J]. Remotesensing Technology and Application, 2007(3): 367-370. | |
[46] | 黄明祥, 龚建华, 李顺, 等. 松材线虫病害高光谱时序与敏感特征研究[J]. 遥感技术与应用, 2012, 27(6): 954-960. |
HUANG M X, GONG J H, LI S, et al. Study on pine wilt disease hyper-spectral time series and sensitive features[J]. Remote Sensing Technology and Application, 2012, 27(6):954-960. | |
[47] | 马跃, 吕全, 赵相涛, 等. 接种不同浓度松材线虫的黑松光谱学特征分析[J]. 山东农业科学, 2012, 44(11): 1216. |
MA Y, LV Q, ZHAO X T, et al. Analysis of spectral characteristics of Pinus thunbergii inoculated with pine wood nematode[J]. Shandong Agricultural Sciences, 2012, 44(11): 1216. DOI: 10.14083/j.issn.1001-4942.2012.11.012. | |
[48] | GILLON D, JOFFRE R, DARDENNE P. Predicting the stage of decay of decomposing leaves by near infrared reflectance spectroscopy[J]. Canadian Journal of Forest Research, 1993, 23(12): 2552-2559. |
[49] | CHODAK M, LUDWIG B, KHANNA P, et al. Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(1): 27-33. DOI: 10.1002/1522-2624(200202) 165:1<27::AID-JPLN27>3.0.CO;2-A. |
[50] | CONFORTI M, MATTEUCCI G, BUTTAFUOCO G. Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties[J]. Journal of Soils and Sediments, 2018, 18(3): 1009-1019. |
[51] | VENDRAME P R S, MARCHÃO R L, BRUNET D, et al. The potential of NIR spectroscopy to predict soil texture and mineralogy in Cerrado Latosols[J]. European Journal of Soil Science, 2012, 63(5): 743-753. |
[52] | SCHWANNINGER M, RODRIGUES J C, FACKLER K. A review of band assignments in near infrared spectra of wood and wood components[J]. Journal of Near Infrared Spectroscopy, 2011, 19(5): 287-308. |
[53] | 江泽慧, 黄安民. 木材中的水分及其近红外光谱分析[J]. 光谱学与光谱分析, 2006(8): 1464-1468. |
JIANG Z H, HUANG A M. Moisture in wood and its near-infrared spectral analysis[J]. Spectroscopy and Spectral Analysis, 2006(8): 1464-1468. | |
[54] | NISGOSKI S, CARNEIRO M E, BOLZON DE MUÑIZ G I. Influencia de la granulometría de la muestra en la discriminación de especies de Salix por infrarrojo cercano[J]. Maderas Ciencia Tecnología, 2015, 17(1): 195-204. DOI: 10.4067/S0718-221X2015005000019. |
[55] | BRAGA J W B, PASTORE T C M, CORADIN V T R, et al. The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (cites appendix II)[J]. Iawa Journal, 2011, 32(2): 285-296. |
[56] | 赵荣军, 邢新婷, 吕建雄, 等. 粗皮桉木材力学性质的近红外光谱方法预测[J]. 林业科学, 2012, 48(10): 106-111. |
ZHAO R J, XING X T, LV J X, et al. Estimation of wood mechanical properties of eucalyptus pellita by near infrared spectroscopy[J]. Scientia Silvae Sinicae, 2012, 48(10): 106-111. | |
[57] | 余雁, 江泽慧, 王戈, 等. 采谱方式对竹材气干密度近红外预测模型精度的影响[J]. 北京林业大学学报, 2007, 29(4): 80-83. |
YU Y, JIANG Z H, WANG G, et al. 2007. Effects of sample surface on the accuracy of near infrared predictive model of air dried density of bamboo[J]. J Beijing For Uni, 2007, 29(4): 80-83. DOI: 10.13332/j.1000-1522.2007.04.019. | |
[58] | BEC K B, GRABSKA J, HUCK C W. Biomolecular and bioanalytical applications of infrared spectroscopy: a review[J]. Analytica Chimica Acta, 2020, 1133: 150-177. DOI: 10.1016/j.aca.2020.04.015. |
[59] | SHI G, CAO J, LI C, et al. Compression strength prediction of Xylosma racemosum using a transfer learning system based on near-infrared spectral data[J]. Journal of Forestry Research, 2020, 31(3): 1061-1069. DOI: 10.1007/s11676-019-01052-2. |
[60] | 高升, 王巧华, 付丹丹, 等. 红提糖度和硬度的高光谱成像无损检测[J]. 光学学报, 2019, 39(10): 1030004. |
GAO S, WANG Q H, FU D D, et al. Nondestructive detection of sugar content and firmness of red globe grape by hypersrectral imaging[J]. Acta Optica Sinica, 2019, 39(10): 1030004. DOI: 10.3788/AOS201939.1030004. | |
[61] | 褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528. |
CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J]. Progress in chemistry, 2004, 16(4): 528. | |
[62] | BARNES R J, DHANOA M S, LISTER S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Applied spectroscopy, 1989, 43(5): 772-777. DOI: 10.1366/0003702894202201. |
[63] | LI Y J, DONG X, SUN Y, et al. An efficient method to reduce grain angle influence on NIR spectra for predicting extractives content from heartwood stem cores of Toona sinensis[J]. Plant methods, 2020, 16: 1-9. DOI: 10.1186/s13007-020-00623-3. |
[64] | KELLEY S S, RIALS T G, SNELL R, et al. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood[J]. Wood Science and Technology, 2004, 38(4): 257-276. DOI: 10.1007/s00226-003-0213-5. |
[65] | 袁天军, 王家俊, 者为, 等. 近红外光谱法的应用及相关标准综述[J]. 中国农学通报, 2013, 29(20): 190-196. |
YUAN T J, WANG J J, ZHE W, et al. The Review of application and standards of near infrared spectrometry[J]. Chinese Agricultural Science Bulletin, 2013, 29(20): 190-196. |
[1] | LIU Yandi, ZHANG Cheng, SUN Zhe, LYU Jiehua. An analysis of the spatial and temporal correlation effects of forestry labor productivity and its influencing factors in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 229-238. |
[2] | TIAN Chunhong, LI Mingyang, LI Tao, LI Dengpan, TIAN Lei. Estimation of forest net primary productivity based on sentinel active and passive remote sensing data and canopy height [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 132-140. |
[3] | ZHAO Yugang, LIU Wenping, ZHOU Yan, CHEN Riqiang, ZONG Shixiang, LUO Youqing. UAV forestry land-cover image segmentation method based on attention mechanism and improved DeepLabV3+ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 93-103. |
[4] | YANG Meng, PENG Hongjun. Strategies for risk-averse forestry enterprises under the put option contract [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 244-252. |
[5] | ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 167-176. |
[6] | PENG Hongjun, XU Xiao, YU Xiaoping. A review of the value realization path of forestry carbon sink products [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 177-186. |
[7] | CAO Lin, ZHOU Kai, SHEN Xin, YANG Xiaoming, CAO Fuliang, WANG Guibin. The status and prospects of smart forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 83-95. |
[8] | ZHANG Zhiguang. Researches on evolution rules of green strategies of renewable-resource-based enterprises: a case study of forestry enterprise [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 1-11. |
[9] | GAO Qinyi, PAN Chunxia, LIU Qiang, GU Guangtong, ZHU Yalu, WU Weiguang. Risk assessments of forestry carbon sequestration projects based on Bayesian network [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 210-218. |
[10] | TONG Long, LI Hongyan, LIU Xiaoming, LI Bin, CHEN Lijie, CHEN Guilan, ZENG Xiaoying, GENG Yanghui. Effects of different cultivated formulas on the agronomic characteristics and nutritional value of Dictyophora indusiata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 30-36. |
[11] | ZHANG Zhiguang. Researches on green features and category architecture of green strategies of renewable-resource-based enterprises: a case study of forestry enterprise [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 1-8. |
[12] | SUN Yuan, LIANG Ziyu, WANG Guibin, JIA Weiguo, ZHENG Wenjiang, LU Xing’an, GUO Qirong, CAO Fuliang. Research hotspots and frontier analyses for agroforestry management [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 228-235. |
[13] | WANG Zhangrong. The current scenario and sustainable developmental strategies for genetically improved tree seed production bases in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 1-8. |
[14] | LIN Chaojian, ZHANG Guangqun, YANG Jie, XU Peng, LI Yingjie, WANG Hangjun. Transfer learning based recognition for forestry business images [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 215-221. |
[15] | TAO Yun, YANG Hongqiang. Comparative study on carbon assessment models in land use, land use change and forestry of typical “Umbrella Group” countries [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 202-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||