JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4): 175-184.doi: 10.12302/j.issn.1000-2006.202110020
Previous Articles Next Articles
YANG Yuping1(), HU Wenmin1,2,*(
), JIA Guanyu1, LI Guo1,2, LI Yi3
Received:
2021-10-10
Revised:
2022-01-19
Online:
2023-07-30
Published:
2023-07-20
CLC Number:
YANG Yuping, HU Wenmin, JIA Guanyu, LI Guo, LI Yi. Scenario simulation integrating the ANN-CA model with the InVEST model to investigate land-based carbon storage in the Dongting Lake area[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 175-184.
Table 1
The data processing of ANN-CA model under water environment protection, biodiversity protection and carbon neutralization scenario"
参数 parameter | 发展目标 development goal | 驱动因素 driving factor | 地类转换 land use type conversion | 参考像元数 number of reference pixel |
---|---|---|---|---|
水环境保护情景(情景Ⅰ) water environment protection scenario(Ⅰ) | 加强流域水资源面积及质量的保护,实现水资源可持续发展,保护水生态环境 | 高程、坡度、坡向、人口密度、到公路距离、到居民点距离、到水系距离 | 水域不可转化为城市用地;未利用地不可转换为城市用地 | 2025年为11 000; 2035年为13 000 |
生物多样性保护情景(情景Ⅱ) biodiversity protection scenario(Ⅱ) | 加强生态用地保护,促进山水林田湖草系统保护修复,保护生物多样性,提升生态环境 | 高程、坡度、坡向、人口密度、年均降水、年均温、到水系距离 | 林地不可转化为城市用地;草地不可转化为城市用地 | 2025年为10 500; 2035年为12 000 |
碳中和情景(情景Ⅲ) carbon neutralization scenario(Ⅲ) | 发展遵循环境友好的低碳模式,提升区域固碳能力 | 高程、坡度、坡向、人口密度、到公路距离、GDP、碳储量 | 草地不可转化为城市用地;未利用地不可转换为城市用地;林地不可转化为城市用地 | 2025年为12 000; 2035年为13 000 |
Table 2
"
碳库 carbon pool | 耕地 arable land | 林地woodland | 草地 meadow | 水域 water area | 建设用地 construction land | 未利用地 unused land | ||||
---|---|---|---|---|---|---|---|---|---|---|
2005年 | 2010年 | 2015年 | 2025年 | 2035年 | ||||||
地上生物量碳密度 aboveground biomass carbon density | 5.82 | 7.64 | 8.79 | 9.83 | 12.23 | 14.50 | 1.34 | 2.79 | 2.28 | 1.19 |
地下生物量碳密度 underground biomass carbon density | 0.58 | 3.06 | 3.51 | 4.07 | 4.87 | 5.80 | 4.02 | 2.92 | 4.00 | 2.50 |
土壤碳密度 soil carbon density | 12.47 | 10.25 | 11.75 | 13.63 | 16.31 | 19.42 | 13.32 | 12.23 | 13.56 | 11.92 |
Table 3
Area proportions and carbon storage changes of each land use type in the study area from 2005 to 2015"
地类 land use type | 面积/km2 area | 平均面积 占比/% average area proportion | 面积占比 变化/% area change proportion | 碳储量/×106 t carbon storage | 碳储量 变化/×106 t carbon storage change | ||
---|---|---|---|---|---|---|---|
2005年 | 2015年 | 2005年 | 2015年 | ||||
耕地arable land | 27 411.89 | 26 520.04 | 44.29 | -1.47 | 51.32 | 49.61 | -1.71 |
林地woodland | 22 820.16 | 22 684.28 | 37.47 | -0.22 | 46.85 | 61.21 | 14.36 |
草地meadow | 838.55 | 782.21 | 1.32 | -0.09 | 1.71 | 1.60 | -0.11 |
水域water area | 7 424.82 | 7 491.62 | 12.27 | 0.11 | 13.89 | 13.99 | 0.10 |
建设用地construction land | 1 457.35 | 2 185.6 | 2.97 | 1.20 | 3.46 | 4.94 | 1.48 |
未利用地unused land | 825.25 | 1 114.27 | 1.68 | 0.48 | 1.31 | 1.76 | 0.45 |
合计total | 60 778.02 | 60 778.02 | 100.00 | 0 | 118.54 | 133.12 | 14.58 |
Table 4
Comparison of each land use area in study area under water environment protection, biodiversity protection and carbon neutralization scenario"
地类 land use type | 情景Ⅰ scenario Ⅰ | 情景Ⅱ scenario Ⅱ | 情景Ⅲ scenario Ⅲ | ||||||
---|---|---|---|---|---|---|---|---|---|
面积/km2 area | 变化比例/% change proportion | 面积/km2 area | 变化比例/% change proportion | 面积/km2 area | 变化比例/% change proportion | ||||
2025年 | 2035年 | 2025年 | 2035年 | 2025年 | 2035年 | ||||
耕地arable land | 26 188.68 | 25 871.73 | -2.44 | 26 112.42 | 25 800.41 | -2.71 | 26 307.24 | 26 088.02 | -1.63 |
林地woodland | 22 290.76 | 22 179.33 | -2.23 | 22 683.69 | 22 695.06 | 0.05 | 22 503.86 | 22 453.12 | -1.02 |
草地meadow | 750.72 | 477.74 | 38.92 | 775.03 | 736.20 | -5.88 | 782.06 | 783.61 | 0.10 |
水域water area | 7 489.04 | 7 493.12 | 0.02 | 7 624.60 | 7 375.35 | -1.55 | 7 403.03 | 7 219.81 | -3.63 |
建设用地construction land | 2 944.34 | 3 642.36 | 66.65 | 2 483.22 | 3 145.43 | 43.92 | 2 668.42 | 3 119.83 | 42.74 |
未利用地unused land | 1 114.48 | 1 113.74 | -0.05 | 1 099.06 | 1 025.57 | -7.96 | 1 113.41 | 1 113.63 | -0.06 |
Table 5
Comparison of different land use carbon storage under water environment protection, biodiversity protection and carbon neutralization scenario at 2025 and 2035"
地类 land use type | 情景Ⅰ scenario Ⅰ | 情景Ⅱ scenario Ⅱ | 情景Ⅲ scenario Ⅲ | ||||||
---|---|---|---|---|---|---|---|---|---|
碳储量/×106 t carbon storage | 变化比例/% change proportion | 碳储量/×106 t carbon storage | 变化比例/% change proportion | 碳储量/×106 t carbon storage | 变化比例/% change proportion | ||||
2025年 | 2035年 | 2025年 | 2035年 | 2025年 | 2035年 | ||||
耕地arable land | 49.01 | 48.39 | -2.47 | 48.90 | 48.31 | -2.62 | 49.21 | 48.80 | -1.64 |
林地woodland | 73.00 | 86.38 | 41.13 | 74.28 | 88.31 | 44.28 | 73.44 | 86.64 | 41.55 |
草地meadow | 1.54 | 0.97 | -38.91 | 1.58 | 1.50 | -5.85 | 1.60 | 1.60 | 0 |
水域water area | 13.99 | 13.99 | 0 | 14.19 | 13.77 | -1.59 | 13.89 | 13.50 | -3.52 |
建设用地construction land | 6.39 | 7.86 | 58.96 | 5.51 | 6.82 | 38.02 | 5.97 | 7.18 | 45.22 |
未利用地unused land | 1.76 | 1.76 | 0 | 1.74 | 1.63 | -7.50 | 1.76 | 1.76 | 0 |
Table 6
"
驱动因素 driving factors | 范围 range | 情景Ⅰ scenario Ⅰ | 情景Ⅱscenario Ⅱ | 情景Ⅲ scenario Ⅲ | |||
---|---|---|---|---|---|---|---|
2025年 | 2035年 | 2025年 | 2035年 | 2025年 | 2035年 | ||
坡向/(°) aspect | [0,67.5] | 28.17 | 30.37 | 28.27 | 30.85 | 28.14 | 30.57 |
(67.5,157.5] | 39.21 | 42.44 | 39.30 | 42.80 | 39.23 | 42.62 | |
(157.5,247.5] | 31.48 | 34.40 | 31.58 | 34.54 | 31.54 | 34.40 | |
(247.5,359.0] | 46.23 | 51.37 | 46.46 | 51.51 | 46.37 | 51.25 | |
坡度/(°) slope | [0,5] | 119.31 | 128.32 | 119.87 | 129.59 | 119.54 | 128.72 |
(5,15] | 22.17 | 26.03 | 22.14 | 25.91 | 22.14 | 25.90 | |
(15,35] | 3.36 | 3.94 | 3.34 | 3.92 | 3.34 | 3.92 | |
(35,45] | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
到公路距离/m distance to road | [0,2 000] | 86.88 | 93.77 | 87.40 | 95.11 | 87.05 | 94.27 |
(2 000,4 000] | 29.12 | 32.09 | 29.11 | 32.04 | 29.12 | 32.02 | |
(4 000,8 000] | 20.74 | 23.15 | 20.74 | 23.04 | 20.75 | 23.03 | |
(8 000,21 000] | 8.13 | 9.30 | 8.11 | 9.25 | 8.12 | 9.24 | |
高程/m DEM | [0,200] | 105.60 | 112.19 | 106.17 | 113.54 | 105.81 | 112.69 |
(200,500] | 27.37 | 32.17 | 27.37 | 32.03 | 27.38 | 32.01 | |
(500,1 000] | 10.07 | 11.86 | 10.04 | 11.78 | 10.05 | 11.78 | |
(1 000,1 900] | 1.82 | 2.10 | 1.79 | 2.08 | 1.80 | 2.08 |
[1] | 高扬, 何念鹏, 汪亚峰. 生态系统固碳特征及其研究进展[J]. 自然资源学报, 2013, 28(7): 1264-1274. |
GAO Y, HE N P, WANG Y F. Characteristics of carbon sequestration by ecosystem and progress in its research[J]. Journal of Natural Resources, 2013, 28(7):1264-1274.DOI:10.11849/zrzyxb.2013.07.018. | |
[2] | FANG J Y, YU G R, LIU L L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences, 2018, 115(16):4015-4020. DOI:10.1073/pnas.1700304115. |
[3] | 朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459. |
ZHU W B, ZHANG J J, CUI Y P, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario: a case study in Qihe River basin[J]. Acta Geographica Sinica, 2019, 74(3):446-459. DOI:10.11821/dlxb201903004. | |
[4] | 黎夏, 李丹, 刘小平, 等. 地理模拟优化系统GeoSOS及前沿研究[J]. 地球科学进展, 2009, 24(8): 899-907. |
LI X, LI D, LIU X P, et al. Geographical simulation and optimization system (GeoSOS) and its cutting-edge researches[J]. Advances in Earth Science, 2009, 24(8):899-907. DOI:10.3321/j.issn:1001-8166.2009.08.007. | |
[5] | 黎夏, 叶嘉安. 基于神经网络的元胞自动机及模拟复杂土地利用系统[J]. 地理研究, 2005, 24(1): 19-27. |
LI X, YE J A. Cellular automata for simulating complex land use systems using neural networks[J]. Geographical Research, 2005, 24(1): 19-27. DOI:10.3321/j.issn:1000-0585.2005.01.003. | |
[6] | LI X, ANTHONY G Y. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 2002, 16(4): 323-343. DOI: 10.1080/13658810210137004. |
[7] | OPENSHAW S. Neural network, genetic, and fuzzy Logic models of spatial interaction[J]. Environment and Planning A: Economy and Space, 1998, 30(10): 1857-1872. DOI: 10.1068/a301857. |
[8] | 刘朋俊, 李茜楠, 李凯, 等. 基于ANN-CA的土地利用变化模拟应用研究[J]. 地理空间信息, 2020, 18(10): 20-24. |
LIU P J, LI Q N, LI K, et al. Research on land use changes simulation application based on ANN-CA[J]. Geospatial Information, 2020, 18(10):20-24.DOI:10.3969/j.issn.1672-4623.2020.10.005. | |
[9] | NOGUEIRA E M, YANAI A M, VASCONCELOS S D, et al. Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia[J]. Regional Environmental Change, 2018, 18(1): 261-270. DOI:10.1007/s10113-017-1198-1. |
[10] | JIANG W G, DENG Y, TANG Z, et al. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models[J]. Ecological Modelling, 2017, 345: 30-40. DOI: 10.1016/j.ecolmodel.2016.12.002. |
[11] | 王慧敏, 曾永年. 青海高原东部土地利用的低碳优化模拟——以海东市为例[J]. 地理研究, 2015, 34(7): 1270-1284. |
WANG H M, ZENG Y N. Land use optimization simulation based on low-carbon emissions in eastern part of Qinghai Plateau[J]. Geographical Research, 2015, 34(7):1270-1284.DOI:10.11821/dlyj201507007. | |
[12] | 马良, 金陶陶, 文一惠, 等. InVEST模型研究进展[J]. 生态经济, 2015, 31(10): 126-131. |
MA L, JIN T T, WEN Y H, et al. The research progress of InVEST model[J]. Ecological Economy, 2015, 31(10): 126-131.DOI:10.3969/j.issn.1671-4407.2015.10.027. | |
[13] | HU W M, ZHOU W J, HE H S. The effect of land-use intensity on surface temperature in the Dongting Lake area, China[J]. Advances in Meteorology, 2015: 1-11. DOI:10.1155/2015/632151. |
[14] | HU W M, LI G, LI Z, et al. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands-two types of homogeneous lakes as examples[J]. Ecological Indicators, 2021, 130:108069.DOI: 10.1016/j.ecolind.2021.108069 |
[15] | 邓正华, 戴丽琦, 邓冰, 等. 洞庭湖流域水资源承载力时空演变分析[J]. 经济地理, 2021, 41(5): 186-192. |
DENG Z H, DAI L Q, DENG B, et al. Spatial-temporal evolution of water resources carrying capacity in Dongting Lake basin[J]. Economic Geography, 2021, 41(5):186-192.DOI:10.15957/j.cnki.jjdl.2021.05.020. | |
[16] | 宁启蒙, 欧阳海燕, 汤放华, 等. 土地利用变化影响下洞庭湖地区景观格局的时空演变[J]. 经济地理, 2020, 40(9): 196-203. |
NING Q M, OUYANG H Y, TANG F H, et al. Temporal and spatial evolution of landscape pattern in Dongting Lake area under the influence of land use change[J]. Economic Geography, 2020, 40(9):196-203.DOI: 10.15957/j.cnki.jjdl.2020.09.021. | |
[17] | 王丽婧, 田泽斌, 李莹杰, 等. 洞庭湖近30年水环境演变态势及影响因素研究[J]. 环境科学研究, 2020, 33(5): 1140-1149. |
WANG L J, TIAN Z B, LI Y J, et al. Trend and driving factors of water environment change in Dongting Lake in the last 30 years[J]. Research of Environmental Sciences, 2020, 33(5):1140-1149.DOI:10.13198/j.issn.1001-6929.2020.03.08. | |
[18] | 袁正科, 李星照, 田大伦, 等. 洞庭湖湿地景观破碎与生物多样性保护[J]. 中南林学院学报, 2006, 26(1): 109-116. |
YUAN Z K, LI X Z, TIAN D L, et al. Wetland landscape fragmentation and bio-diversity protection of Dongting Lake[J]. Journal of central south forestry college, 2006, 26(1):109-116.DOI: 10.3969/j.issn.1673-923X.2006.01.010. | |
[19] | 刘斌寅, 卢宏亮. 基于ANN-CA模型的安徽省淮北市土地利用变化模拟[J]. 黑龙江工程学院学报, 2019, 33(3): 35-39. |
LIU B Y, LU H L. Simulation of land use change in Huaibei City,Anhui Province based on ANN-CA model[J]. Journal of Heilongjiang Institute of Technology, 2019, 33(3):35-39. DOI: 10.19352/j.cnki.issn1671-4679.2019.03.007. | |
[20] | HU W M, LI G, GAO Z H, et al. Assessment of the impact of the poplar ecological retreat project on water conservation in the Dongting Lake wetland region using the InVEST model[J]. Science of The Total Environment, 2020, 733: 139423. DOI: 10.1016/j.scitotenv.2020.139423 |
[21] | 揣小伟, 黄贤金, 郑泽庆, 等. 江苏省土地利用变化对陆地生态系统碳储量的影响[J]. 资源科学, 2011, 33(10): 1932-1939. |
CHUAI X W, HUANG X J, ZHENG Z Q, et al. Land use change and its influence on carbon storage of terrestrial ecosystems in Jiangsu Province[J]. Resources Science, 2011, 33(10):1932-1939.DOI:CNKI:SUN:ZRZY.0.2011-10-016. | |
[22] | 陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测[J]. 遥感学报, 2002, 6(2): 129-135. |
CHEN L J, LIU G H, LI H G. Estimating net primary productivity of terrestrial vegetation in China using remote sensing[J]. Journal of Remote Sensing, 2002, 6(2):129-135.DOI: 10.11834/jrs.20020210. | |
[23] | 陈仕栋, 方晰. 湖南省土壤有机碳库及其空间分布格局[J]. 中南林业科技大学学报, 2011, 31(5): 146-151. |
CHEN S D, FANG X. Studies of spatial distribution pattern of soil organic carbon in Hunan Province[J]. Journal of Central South University of Forestry & Technology, 2011, 31(5):146-151.DOI: 10.3969/j.issn.1673-923X.2011.05.026. | |
[24] | 奚小环, 张建新, 廖启林, 等. 多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例[J]. 第四纪研究, 2008, 28(1): 58-67. |
XI X H, ZHANG J X, LIAO Q L, et al. Multi-purpose regional geochemical survey and soil carbon reserves problem: examples of Jiangsu, Hunan, Sichuan, Jilin Provinces and Inner Mongolia[J]. Quaternary Sciences, 2008, 28(1):58-67.DOI: 10.3321/j.issn:1001-7410.2008.01.007. | |
[25] | 解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(1):35-43. |
XIE X L, SUN B, ZHOU H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica, 2004, 41(1):35-43.DOI: 10.11766/trxb200301140106. | |
[26] | FANG J Y, WANG G G, LIU G H, et al. Forest biomass of China: an estimate based on the biomass-volume relationship[J]. Ecological Applications, 1998, 8(4): 1084.DOI:10.2307/2640963. |
[27] | 奚小环, 杨忠芳, 廖启林, 等. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 2010, 30(3): 573-583. |
XI X H, YANG Z F, LIAO Q L, et al. Soil organic carbon storage in typical regions of China[J]. Quaternary Sciences, 2010, 30(3):573-583.DOI:10.3969/j.issn.1001-7410.2010.03.16. | |
[28] | 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3): 397-409. |
LIU X J, LI X, LIANG X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39(3):397-409. DOI:10.13284/j.cnki.rddl.003138. | |
[29] | 李瑾璞, 夏少霞, 于秀波, 等. 基于InVEST模型的河北省陆地生态系统碳储量研究[J]. 生态与农村环境学报, 2020, 36(7): 854-861. |
LI J P, XIA S X, YU X P, et al. Evaluation of carbon storage on terrestrial ecosystem in Hebei Province based on InVEST model[J]. Journal of Ecology and Rural Environment, 2020, 36(7): 854-861.DOI:10.19741/j.issn.1673-4831.2019.0918. | |
[30] | 陈光水, 杨玉盛, 刘乐中, 等. 森林地下碳分配(TBCA)研究进展[J]. 亚热带资源与环境学报, 2007, 2(1): 34-42. |
CHEN G S, YANG Y S, LIU L Z, et al. Research review on total belowground carbon allocation in forest ecosystems[J]. Journal of Subtropical Resources and Environment, 2007, 2(1):34-42.DOI: 10.3969/j.issn.1673-7105.2007.01.005. | |
[31] | CALVO B E, TANABE K, KRANJC A, et al. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Switzerland: IPCC, 2019. |
[32] | 岳隽, 王仰麟, 李正国, 等. 河流水质时空变化及其受土地利用影响的研究——以深圳市主要河流为例[J]. 水科学进展, 2006, 17(3): 359-364. |
YUE J, WANG Y L, LI Z G, et al. Spatial-temporal trends of water quality and its influence by land use: a case study of the main rivers in Shenzhen[J]. Advances in Water Science, 2006, 17(3):359-364. DOI:10.3321/j.issn:1001-6791.2006.03.011. | |
[33] | 潘海啸. 面向低碳的城市空间结构——城市交通与土地使用的新模式[J]. 城市发展研究, 2010, 17(1): 40-45. |
PAN H X. Urban spatial structure towards low carbon: new urban transport and land use model[J]. Urban Development Studies, 2010, 17(1):40-45.DOI: 10.3969/j.issn.1006-3862.2010.01.007. | |
[34] | 柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响——以湖北省为例[J]. 生态学报, 2019, 39(2): 672-683. |
KE X L, TANG L P. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province,China[J]. Acta Ecologica Sinica, 2019, 39(2):672-683.DOI:10.5846/stxb201712042177. | |
[35] | 余娜, 李淑杰, 王灵芝, 等. 基于ANN-CA及AgentLA模型的农用地整治研究——以吉林省敦化市为例[J]. 地域研究与开发, 2019, 38(6): 136-140. |
YU N, LI S J, WANG L Z, et al. Agricultural land reclamation based on ANN-CA and AgentLA model: a case study of Dunhua City in Jilin Province[J]. Areal Research and Development, 2019, 38(6):136-140.DOI:10.3969/j.issn.1003-2363.2019.06.025. | |
[36] | 孙赫, 梁红梅, 常学礼, 等. 中国土地利用碳排放及其空间关联[J]. 经济地理, 2015, 35(3): 154-162. |
SUN H, LIANG H M, CHANG X L, et al. Land use patterns on carbon emission and spatial association in China[J]. Economic Geography, 2015, 35(3):154-162. DOI:10.15957/j.cnki.jjdl.2015.03.023. |
[1] | KONG Fanbin, JIN Chentao, XU Caiyao. Changes in the coupling coordination relationship between ecosystem services and residents’ well-being and its influencing factors in the Luoxiao Mountain area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 245-254. |
[2] | YANG Yuping, CHEN Caihong, SHE Jiyun, LIN Chuxuan, XIAO Fen, CHEN Chulin. Prediction of the spatiotemporal evolution of county habitat quality under multi-scenario simulation: a case of Taoyuan County [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 201-209. |
[3] | CHEN Leiru, WEN Zhengyu, XU Xiaoniu, YIN Ruoyong, GAO Yu. Effects of long-term nitrogen and phosphorus additions on soil organic carbon storage and its components in a subtropical forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 139-146. |
[4] | ZHAO Xiaoyu, WANG Yiming, HE Xu, LIU Xiaoyan, ZHANG Jiamin, DENG Yi, FENG Yao, CHU Lei, ZHANG Zengxin. Changing features of habitat quality in Wuxi City based on InVEST model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 165-172. |
[5] | ZHANG Ying, WANG Ranghui, LIU Chunwei, ZHOU Limin. Simulation and prediction of habitat quality in the Qilian Mountain Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 135-144. |
[6] | SHEN Hao, JIANG Jiang, ZHOU Chen, PAN Qingquan. Research on factors driving carbon storage in broad-leaved forests of different origins from Shicheng, Jiangxi Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 185-190. |
[7] | ZHU Zhihong, ZHOU Benzhi, WANG Yixiang, QI Jun, LI Aibo, HUANG Runxia. Spatio-temporal variations and influencing factors of water yield in the Thousand-Island Lake basin in the past 30 years [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 111-119. |
[8] | ZHANG Yucheng, HAN Nianlong, HU Ke, YU Miao, LI Xingqiang. The impact of land-use changes on the spatio-temporal variation of carbon storage in the central mountainous area of Hainan Island [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 115-122. |
[9] | WANG Dawei, SHEN Wenxing. The carbon storage calaulation and carbon sequestration potential analysis of the main artificial arboreal forest in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 11-19. |
[10] | LI Xiao, YANG Jiameng, CHEN Yuheng, MAO Lingfeng, GE Zhiwei. Evaluations of habitat quality of Jiangsu Yancheng Wetland National Nature Rare Bird Reserve based on land use changes [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 169-176. |
[11] | LEI Haiqing, SUN Gaoqiu, ZHENG Deli. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 20-26. |
[12] | XIAO Jun. Dynamic changes in carbon storage and strategies to increase carbon sink of natural arbor forests in Fujian Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 27-32. |
[13] | WANG Youliang, LIN Kaimin, SONG Chongsheng, CUI Chaowei, PENG Lihong, ZHENG Hong, ZHENG Mingming, REN Zhengbiao, QIU Mingjing. Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 65-73. |
[14] | XIN Shidong, JIANG Lichun, MU Lin. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 115-121. |
[15] | LUO Yan, HE Pengjun, LYU Qian, FAN Chuan, FENG Maosong, LI Xianwei, CHEN Luman. Early effect of target tree management on carbon storage in Pinus massoniana plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 206-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||