JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4): 51-60.doi: 10.12302/j.issn.1000-2006.202112005
Special Issue: 第三届中国林草计算机应用大会论文精选(Ⅱ)
Previous Articles Next Articles
GAI Junpeng1,2(), CHEN Dongsheng3,*(
), JIA Weiwei1, WANG Zheng1,2
Received:
2021-12-03
Revised:
2022-03-21
Online:
2023-07-30
Published:
2023-07-20
CLC Number:
GAI Junpeng, CHEN Dongsheng, JIA Weiwei, WANG Zheng. Developing height growth model of Larix kaempferi based on genetic and climate effects[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 51-60.
Table 1
Provenance information of tested materials in Changlinggang Forest Farm, Jianshi County, Hubei Province"
种源编号 No. | 种子来源 provenance | 纬度 latitude (N) | 经度 longitude (E) | 采种地概况 general situation | ||
---|---|---|---|---|---|---|
海拔/m altitude | 年平均气温/℃ average annual temperature | 年降水量/mm annual precipitation | ||||
1 | 草津国有林 | 36°35' | 138°30' | 1 374 | 6.9 | 1 747 |
2 | 浅间国有林 | 36°20' | 138°30' | 927 | 9.3 | 1 360 |
3 | 富士山梨县有林 | 35°30' | 138°45' | 844 | 10.5 | 1 595 |
4 | 日光国有林 | 35°45' | 138°10' | 1 726 | 5.9 | 1 795 |
5 | 伊那国有林 | 36°45' | 139°25' | 1 444 | 5.9 | 2 003 |
6 | 松本国有林 | 36°20' | 139°45' | 1 620 | 14.0 | 1 266 |
Table 2
Number of trees and average growth of tree height of Larix kaempferi from different provenances"
树龄/a tree age | 种源1 provenance 1 | 种源2 provenance 2 | 种源3 provenance 3 | 种源4 provenance 4 | 种源5 provenance 5 | 种源6 provenance 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | 株数 trees | 树高/m tree height | |
5 | 400 | 2.98 | 150 | 2.93 | 467 | 3.10 | 392 | 3.28 | 614 | 3.12 | 249 | 3.01 |
6 | 401 | 3.65 | 148 | 3.58 | 469 | 3.68 | 390 | 3.94 | 612 | 3.73 | 251 | 3.63 |
7 | 401 | 4.40 | 150 | 4.31 | 468 | 4.32 | 391 | 4.68 | 614 | 4.41 | 248 | 4.33 |
8 | 397 | 5.24 | 150 | 5.10 | 465 | 5.02 | 383 | 5.53 | 614 | 5.17 | 249 | 5.11 |
9 | 399 | 6.13 | 149 | 5.93 | 458 | 5.77 | 376 | 6.45 | 597 | 6.01 | 245 | 5.97 |
10 | 396 | 7.05 | 150 | 6.78 | 459 | 6.54 | 378 | 7.37 | 597 | 6.86 | 244 | 6.85 |
11 | 294 | 8.09 | 113 | 7.68 | 326 | 7.58 | 267 | 8.40 | 394 | 7.85 | 170 | 7.81 |
12 | 293 | 9.00 | 110 | 8.54 | 324 | 8.39 | 264 | 9.32 | 397 | 8.72 | 169 | 8.73 |
13 | 295 | 9.87 | 108 | 9.34 | 325 | 9.17 | 266 | 10.21 | 394 | 9.56 | 169 | 9.60 |
14 | 296 | 10.67 | 107 | 10.08 | 327 | 9.91 | 265 | 11.04 | 394 | 10.35 | 168 | 10.42 |
15 | 296 | 11.39 | 107 | 10.74 | 325 | 10.60 | 264 | 11.81 | 396 | 11.09 | 169 | 11.18 |
16 | 287 | 12.06 | 106 | 11.38 | 325 | 11.24 | 262 | 12.50 | 393 | 11.75 | 168 | 11.86 |
17 | 286 | 12.61 | 106 | 11.91 | 325 | 11.81 | 264 | 13.10 | 393 | 12.36 | 167 | 12.48 |
18 | 288 | 13.08 | 105 | 12.37 | 324 | 12.33 | 264 | 13.64 | 393 | 12.89 | 167 | 13.02 |
Table 3
Results of correlation analysis between annual growth of tree height and climatic factors"
因子 factor | 树高连年 生长量 annual growht amount of tree height | 平均最冷 月气温 the coldest month temperature | 秋季降水 autumn precipitation | 年平均 气温差 average annual temperature difference | 1月最高温 the highest temperature in January | 1月最低温 the lowest temperature in January | 1月均温 average temperature in January | 上年秋季 降水量 last autmn precipitation |
---|---|---|---|---|---|---|---|---|
树高连年生长量 annual growth amount of tree height | 1 | |||||||
平均最冷月气温 the coldest month temperature | -0.561* | 1 | ||||||
秋季降水 autumn precipitation | -0.583* | 0.008 | 1 | |||||
年平均气温差 average annual temperature difference | 0.578* | -0.888** | -0.126 | 1 | ||||
1月最高温 the highest temperature in January | -0.628* | 0.897** | 0.171 | -0.782** | 1 | |||
1月最低温 the lowest temperature in January | -0.554* | 0.903** | 0.253 | -0.884** | 0.790** | 1 | ||
1月均温 average temperature in January | -0.635* | 0.944** | 0.223 | -0.862** | 0.968** | 0.918** | 1 | |
上年秋季降水量 last autumn precipitation | -0.672* | 0.247 | -0.349 | 0.474 | 0.22 | 0.31 | 0.273 | 1 |
Table 5
Fitting results of mixed models based on different combinations of random effect parameters"
模型 model | 随机效应参数 random effect parameter | 参数个数 number of parameter | AIC | BIC | Log Likelihood | LRT | P | |
---|---|---|---|---|---|---|---|---|
(7) | — | 13 | 0.806 2 | 64 569 | 64 670 | -32 271 | ||
(7-1) | a1 | 14 | 0.819 5 | 63 446 | 63 555 | -31 709 | ||
(7-2) | a3 | 14 | 0.820 0 | 63 397 | 63 506 | -31 685 | ||
(7-3) | a4 | 14 | 0.818 3 | 63 566 | 63 675 | -31 769 | ||
(7-4) | a5 | 14 | 0.819 4 | 63 451 | 63 559 | -31 711 | ||
(7-5) | a1,a2 | 16 | 0.820 2 | 63 384 | 63 508 | -31 676 | 70.792 | <0.000 1 |
(7-6) | a1,a3 | 16 | 0.820 2 | 63 387 | 63 512 | -31 678 | ||
(7-7) | a2,a3 | 16 | 0.820 1 | 63 390 | 63 514 | -31 679 | ||
(7-8) | a2,a4 | 16 | 0.819 8 | 63 413 | 63 537 | -31 690 | ||
(7-9) | a2,a5 | 16 | 0.820 0 | 63 390 | 63 515 | -31 679 | ||
(7-10) | a1,a2,a3 | 19 | 0.820 3 | 63 379 | 63 526 | -31 670 | 17.840 | 0.000 5 |
(7-11) | a1,a2,a4 | 19 | 0.820 0 | 63 408 | 63 556 | -31 685 | ||
(7-12) | a1,a2,a5 | 19 | 0.820 3 | 63 384 | 63 531 | -31 673 | ||
(7-13) | a1,a3,a5 | 19 | 0.820 2 | 63 390 | 63 538 | -31 676 |
Table 6
Variance compositions, parameters and fitting statistics of the model"
项目 item | 参数 parameter | 模型(1) model(1) | 模型(7) model(7) | 模型(7-10) model(7-10) | 项目 item | 参数 parameter | 模型(1) model(1) | 模型(7) model(7) | 模型(7-10) model(7-10) |
---|---|---|---|---|---|---|---|---|---|
固定参数 fixed parameter | a1 | 15.235 | 13.710 | 13.751 | 固定参数 fixed parameter | a31 | -0.044 | -0.029 | |
a2 | 12.894 | 15.140 | 15.051 | a33 | -0.022 | -0.033 | |||
a3 | 0.238 | 0.273 | 0.271 | 随机参数 random parameter | a1 | 0.431 | |||
a4 | -3.77×10-4 | -4.32×10-4 | a2 | 0.675 | |||||
a5 | -2.25×10-5 | -2.50×10-5 | a3 | 0.007 | |||||
a11 | 2.147 | 1.574 | a1、a2 | -0.393 | |||||
a13 | 2.148 | 2.748 | a1、a3 | -0.557 | |||||
a21 | -2.206 | -1.318 | a2、a3 | 0.669 | |||||
a22 | -1.302 | -1.141 | 拟合统计量 fitting statistics | 0.798 9 | 0.806 2 | 0.820 3 | |||
a23 | -0.970 | -1.477 | RMSE | 1.525 | 1.496 | 1.440 |
Table 7
Effects and time node of various provenances fitting Logistic model"
种源 provenance | a1 | a2 | a3 | t0/a | t1/a | t2/a | 18 a树高/m 18-years- tree height | 速生期树高增长量/m tree height growth in fast-growing |
---|---|---|---|---|---|---|---|---|
1 | 14.94 | 14.37 | 0.26 | 10.4 | 5.3 | 15.6 | 13.08 | 9.08 |
2 | 14.22 | 12.98 | 0.25 | 10.4 | 5.0 | 15.7 | 12.37 | 8.45 |
3 | 14.66 | 12.12 | 0.23 | 10.8 | 5.1 | 16.5 | 12.33 | 8.14 |
4 | 15.83 | 13.04 | 0.24 | 10.6 | 5.1 | 16.0 | 13.64 | 9.22 |
5 | 15.23 | 12.79 | 0.24 | 10.8 | 5.2 | 16.4 | 12.89 | 8.63 |
6 | 15.33 | 13.72 | 0.24 | 10.9 | 5.4 | 16.3 | 13.02 | 8.85 |
均值 mean | 10.6 | 5.2 | 16.1 | 12.89 | 8.73 |
[1] | 马常耕. 从世界落叶松遗传改良现状论我国落叶松良种化的对策[J]. 世界林业研究, 1992, 5(1):57-65. |
MA C G. The present state of genetic improvement of larchs in the world and the future developmental strategies in China[J]. World For Res, 1992, 5(1):57-65.DOI: 10.13348/j.cnki.sjlyyj.1992.01.010. | |
[2] | AHTIKOSKI A, AHTIKOSKI R, HAAPANEN M, et al. Economic performance of genetically improved reforestation material in joint production of timber and carbon sequestration:a case study from Finland[J]. Forests, 2020, 11(8):847.DOI: 10.3390/f11080847. |
[3] | JOO S, MAGUIRE D, JAYAWICKRAMA K, et al. Estimation of yield gains at rotation-age from genetic tree improvement in coast Douglas-fir[J]. For Ecol Manag, 2020, 466(5-6):117930.DOI: 10.1016/j.foreco.2020.117930. |
[4] | AHTIKOSKI A, HAAPANEN M, HYNYNEN J, et al. Genetically improved reforestation stock provides simultaneous benefits for growers and a sawmill,a case study in Finland[J]. Scand J For Res, 2018, 33(5):484-492. |
[5] | 卢晨升. 不同种源邓恩桉遗传变异分析及选择[D]. 南宁: 广西大学, 2018. |
LU C S. Genetic variation analysis and selection of Eucalyptus dunnii from different provenances[D]. Nanning: Guangxi University, 2018. | |
[6] | 伍汉斌, 段爱国, 张建国. 杉木地理种源不同林龄生长变异及选择[J]. 林业科学, 2019, 55(10):181-192. |
WU H B, DUAN A G, ZHANG J G. Growth variation and selection effect of Cunninghamia lanceolata provenances at different stand ages[J]. Sci Silvae Sin, 2019, 55(10):181-192.DOI: 10.11707/j.1001-7488.20191018. | |
[7] | 李培, 阙青敏, 欧阳昆唏, 等. 不同种源红椿SRAP标记的遗传多样性分析[J]. 林业科学, 2016, 52(1):62-70. |
LI P, QUE Q M, OUYANG K X, et al. Genetic diversity of Toona ciliata from different provenances based on sequence-related amplified polymorphism (SRAP) markers[J]. Sci Silvae Sin, 2016, 52(1):62-70.DOI: 10.11707/j.1001-7488.20160108. | |
[8] | 王亚南. 基于哑变量和非线性混合模型方法研究华山松种源对树高生长模型参数的影响[D]. 郑州: 河南农业大学, 2013. |
WANG Y N. Based on dummy variable and nonlinear mixed model method,the influence of Pinus armandii provenance on tree height growth model parameters was studied[D]. Zhengzhou: Henan Agricultural University, 2013. | |
[9] | PAN Y Y, LI S C, WANG C L, et al. Early evaluation of growth traits of Larix kaempferi clones[J]. J For Res, 2018, 29(4):1031-1039.DOI: 10.1007/s11676-017-0492-6. |
[10] | LIANG D Y, DING C J, ZHAO G H, et al. Variation and selection analysis of Pinus koraiensis clones in northeast China[J]. J For Res, 2018, 29(3):611-622.DOI: 10.1007/s11676-017-0471-y. |
[11] | XIA H, ZHAO G H, ZHANG L S, et al. Genetic and variation analyses of growth traits of half-sib Larix olgensis families in northeastern China[J]. Euphytica, 2016, 212(3):387-397.DOI: 10.1007/s10681-016-1765-4. |
[12] | 孙晓梅. 日本落叶松纸浆材优良家系选择及家系生长模型的研究[D]. 北京: 中国林业科学研究院, 2003. |
SUN X M. Study on the selection of superior families of Larix kaempferi pulp wood and family growth model[D]. Beijing: Chinese Academy of Fores-try, 2003. | |
[13] | 肖锐, 陈东升, 李凤日, 等. 基于两水平混合模型的杂种落叶松胸径和树高生长模拟[J]. 东北林业大学学报, 2015, 43(5):33-37. |
XIAO R, CHEN D S, LI F R, et al. Simulating DBH and height growth of trees for hybrid larch plantation with two-level mixed effect model[J]. J Northeast For Univ, 2015, 43(5):33-37.DOI: 10.13759/j.cnki.dlxb.20150522.025. | |
[14] | LI C M, XIA H, BAI H, et al. Genetic variation of height growth rhythm between clones of Larix kaempferi × L. gmelini based on Logistic models[J]. J For Res, 2018, 29(5):1387-1394.DOI: 10.1007/s11676-017-0558-5. |
[15] | 陈东升, 孙晓梅, 李凤日. 基于混合模型的落叶松树高生长模型[J]. 东北林业大学学报, 2013, 41(10):60-64. |
CHEN D S, SUN X M, LI F R. Predicting models of tree height growth for larch based on mixed model[J]. J Northeast For Univ, 2013, 41(10):60-64.DOI: 10.13759/j.cnki.dlxb.2013.10.021. | |
[16] | PARMESAN C, YOHE G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421(6918):37-42.DOI: 10.1038/nature01286. |
[17] | 臧颢. 区域尺度气候敏感的落叶松人工林林分生长模型[D]. 北京: 中国林业科学研究院, 2016. |
ZANG H. Growth model of Larix gmelinii plantation with climate sensitivity at regional scale[D]. Beijing: Chinese Academy of Forestry, 2016. | |
[18] | 吴梦婉. 辽宁章古台沙地樟子松人工林树木生长及其对气候的响应[D]. 北京: 北京林业大学, 2019. |
WU M W. Tree growth and its response to climate in Pinus sylvestris var.mongolica plantation in Zhanggutai sandy land,Liaoning Province[D]. Beijing: Beijing Forestry University, 2019. | |
[19] | MÉLAINE A K, EMILY M. Climate impacts on tree growth in the sierra Nevada[J]. Multidisciplinary Digital Publishing Institute, 2017, 8(11):1190-1199. DOI:10.3390/f8110414. |
[20] | SHARMA M, SUBEDI N, TER-MIKAELIAN M, et al. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees[J]. For Sci, 2015, 61(1):25-34.DOI: 10.5849/forsci.13-190. |
[21] | 王宇超, 陈逸飞, 林晨蕾, 等. 森林抚育间伐对杉木人工林温湿度的影响研究[J]. 森林工程, 2022, 38(1): 9-14, 26. |
WANG Y C, CHEN Y F, LIN C L, et al. Effects of forest tending and thinning on temperature and humidity of Chinese fir plantation[J]. Forest Engineering, 2022, 38(1): 9-14, 26. | |
[22] | 刘帅, 李建军, 卿东升, 等. 气候敏感的青冈栎单木胸径生长模型[J]. 林业科学, 2021, 57(1):95-104. |
LIU S, LI J J, QING D S, et al. A climate-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca[J]. Sci Silvae Sin, 2021, 57(1):95-104.DOI: 10.11707/j.1001-7488.20210110. | |
[23] | 赵曦阳, 张志毅. 毛白杨种内杂交无性系苗期生长模型构建[J]. 北京林业大学学报, 2013, 35(5):15-21. |
ZHAO X Y, ZHANG Z Y. Model construction of seedling growth for hybrid clones of Populus tomentosa[J]. J Beijing For Univ, 2013, 35(5):15-21.DOI: 10.13332/j.1000-1522.2013.05.018. | |
[24] | 祖笑锋, 倪成才, NIGH G, 等. 基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程[J]. 林业科学, 2015, 51(3):25-33. |
ZU X F, NI C C, NIGH G, et al. Based on mixed-effects model and empirical best linear unbiased predictor to predict growth profile of dominant height[J]. Sci Silvae Sin, 2015, 51(3):25-33.DOI: 10.11707/j.1001-7488.20150304. | |
[25] | 魏辉. 亚热带木荷生长过程及其年轮气候学研究[D]. 长沙: 中南林业科技大学, 2017. |
WEI H. Study on growth process and dendroclimatology of Schima superba in subtropical zone[D]. Changsha: Central South University of Forestry & Technology, 2017. | |
[26] | 郑淑霞, 上官周平. 树木年轮与气候变化关系研究[J]. 林业科学, 2006, 42(6):100-107. |
ZHENG S X, SHANGGUAN Z P. Study on relationship between tree-ring and climatic change[J]. Sci Silvae Sin, 2006, 42(6):100-107.DOI: 10.3321/j.issn:1001-7488.2006.06.017. | |
[27] | 罗元, 孙琪, 蔡年辉, 等. 云南松不同种源1年生播种苗木生长节律分析[J]. 西南林业大学学报, 2016, 36(3):23-29. |
LUO Y, SUN Q, CAI N H, et al. Growth rhythm analysis on annual planting seedlings of Pinus yunnanensis from different provenances[J]. J Southwest For Univ, 2016, 36(3):23-29. | |
[28] | 吴宏炜, 张伟志, 田意, 等. 基于哑变量的湿地松林分断面积生长模型[J]. 中南林业科技大学学报, 2021, 41(1):117-123,150. |
WU H W, ZHANG W Z, TIAN Y, et al. Basal area growth model for Pinus elliottii forest based on dummy variables[J]. J Central South Univ For Technol, 2021, 41(1):117-123,150.DOI: 10.14067/j.cnki.1673-923x.2021.01.012. | |
[29] | 贾炜玮, 罗天泽, 李凤日. 基于抚育间伐效应的红松人工林枝条密度模型[J]. 北京林业大学学报, 2021, 43(2):10-21. |
JIA W W, LUO T Z, LI F R. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. J Beijing For Univ, 2021, 43(2):10-21.DOI: 10.12171/j.1000-1522.20200057. | |
[30] | 王冬至, 张冬燕, 李永宁, 等. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J]. 林业科学, 2019, 55(11):85-94. |
WANG D Z, ZHANG D Y, LI Y N, et al. Height-diameter relationship for conifer mixed forest based on Bayesian nonlinear mixed-effects model[J]. Sci Silvae Sin, 2019, 55(11):85-94.DOI: 10.11707/j.1001-7488.20191110. | |
[31] | TIMILSINA N, STAUDHAMMER C L. Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed modeling[J]. For Sci, 2013, 59(1):27-37.DOI: 10.5849/forsci.10-028. |
[32] | 王伟峰, 廖为明, 王强, 等. 樟子松人工林树高生长对气候因子的响应研究[J]. 江西林业科技, 2009, 37(3):1-5. |
WANG W F, LIAO W M, WANG Q, et al. Studies on the respond of height growth to the climate factors in Pinus sylvestris plantation[J]. Jiangxi For Sci Technol, 2009, 37(3):1-5.DOI: 10.16259/j.cnki.36-1342/s.2009.03.008. | |
[33] | 周晏平. 辽宁章古台樟子松树高生长影响因素分析[D]. 阜新: 辽宁工程技术大学, 2019. |
ZHOU Y P. Analysis of influencing factors on height growth of Pinus sylvestris var.mongolica in Zhanggutai,Liaoning Province[D]. Fuxin:Liaoning Technical University, 2019. |
[1] | CHEN Shengkan, GUO Dongqiang, DENG Ziyu, TANG Qinglan, LIAO Changkun, YANG Zhiwang, ZHU Yuanli, LI Changrong. Stability evaluation on tree height for introduced provenances of Corymbia citriodora subsp. variegata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 67-74. |
[2] | YANG Yuanmu, LI Na, CHEN Xinyu, XU Fang, PAN Wen, ZHANG Weihua. Study on wood variation of provenances and clones of Castanopsis hystrix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 41-50. |
[3] | HUANG Luyao, DU Shanfeng, JI Xiaofang, GUAN Xin, LIU Shenglong, YE Limin, JIANG Jiang. Carbon dynamic simulation based on Biome-BGC model in mixed coniferous and broadleaved forest of Fengyang Mountain, Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 11-20. |
[4] | HE Xu, MIAO Zimei, TIAN Jiaxi, YANG Liu, ZHANG Zengxin, ZHU Bin. Temperature, precipitation and runoff prediction in the Yangtze River basin based on CMIP 6 multi-model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 1-8. |
[5] | SHI Song, LI Wen, ZHAI Yucen, LIN Xiaopeng, DING Yishu. Spatiotemporal changes of vegetation NDVI and those reasons in northeast China Tiger and Leopard National Park [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 31-41. |
[6] | HE Xiao, LEI Xiangdong, DUAN Guangshuang, FENG Qingrong, ZHANG Yiru, FENG Linyan. Modelling the effects of climate change on stand biomass growth of larch plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 120-128. |
[7] | SUN Rongxi, PAN Xinhao, ZHONG Xiaoru, LI Guisheng. Variations in seed morphological characteristics and nutritional content of Castanopsis carlesii from different provenances [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 27-34. |
[8] | ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 167-176. |
[9] | HU Xingfeng, WU Fan, SUN Xiaobo, CHEN Houping, YIN Anzheng, JI Kongshu. Joint analysis of growth and wood property of 38-year-old Pinus massoniana from 55 provenances [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 203-212. |
[10] | WU Fan, ZHU Peihuang, JI Kongshu. Responses of masson pine(Pinus massoniana) distribution patterns to future climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 196-204. |
[11] | MIAO Jing, WANG Yong, WANG Lu, XU Xiaogang. Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 193-198. |
[12] | ZHANG Fengying, ZHANG Zengxin, TIAN Jiaxi, HUANG Richao, KONG Rui, ZHU Bin, ZHU Min, WANG Yiming, CHEN Xi. Forest NPP simulation in the Yangtze River Basin and its response to climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 175-181. |
[13] | ZHANG Heng, ZHANG Qiuliang, YUE Yang, SONG Ximing, DAI Haiyan, YI Bole. The impact of climate change on forest and grassland fires and future trends in Hulunbuir City, Inner Mongolia [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 222-230. |
[14] | HUANG Honglan, ZHONG Wogu, YI Deping, CAI Junhuo, ZHANG Lu. Predicting the impact of future climate change on the distribution patterns of Toona ciliata var. pubescens in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 163-170. |
[15] | CHANG Juan, ZHANG Zengxin, TIAN Jiaxi, CHEN Xi, CHEN Yizhao. Spatio‑temporal characteristics of grassland water use efficiency and its response to climate change in northwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 119-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||