JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (5): 1-8.doi: 10.12302/j.issn.1000-2006.202212004
Previous Articles Next Articles
YANG Jiading1(), LIU Yujie1, FENG Jianyuan1,2, ZHANG Yuanlan1
Received:
2022-12-01
Revised:
2023-01-29
Online:
2023-09-30
Published:
2023-10-10
CLC Number:
YANG Jiading, LIU Yujie, FENG Jianyuan, ZHANG Yuanlan. Nitrogen resorption machanism during leaf senescence in woody plants[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 1-8.
[1] | 蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望[J]. 生命科学, 2018, 30(10):1060-1071. |
JIANG Z M, WANG W, CHU C C. Towards understanding of nitrogen use efficiency in plants[J]. Chin Bull Life Sci, 2018, 30(10):1060-1071.DOI: 10.13376/j.cbls/2018128. | |
[2] |
YANG J D, UDVARDI M. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production[J]. J Exp Bot, 2018, 69(4):855-865.DOI: 10.1093/jxb/erx241.
pmid: 29444307 |
[3] | CASSMAN K G, DOBERMANN A. Nitrogen and the future of agriculture:20 years on[J]. Ambio, 2022, 51(1):17-24.DOI: 10.1007/s13280-021-01526-w. |
[4] |
XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63:153-182.DOI: 10.1146/annurev-arplant-042811-105532.
pmid: 22224450 |
[5] | 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展[J]. 植物生理学报, 2018, 54(9):1401-1408. |
WU J N, WEI X D, LI X, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiol J, 2018, 54(9):1401-1408.DOI: 10.13592/j.cnki.ppj.2018.0071. | |
[6] | WANG Y Y, HSU P K, TSAY Y F. Uptake,allocation and signaling of nitrate[J]. Trends Plant Sci, 2012, 17(8):458-467.DOI: 10.1016/j.tplants.2012.04.006. |
[7] | MORAN-ZULOAGA D, DIPPOLD M, GLASER B, et al. Organic nitrogen uptake by plants:reevaluation by position-specific labeling of amino acids[J]. Biogeochemistry, 2015, 125(3):359-374.DOI: 10.1007/s10533-015-0130-3. |
[8] | LIU Y Y, WU L H, BADDELEY J A, et al. Models of biological nitrogen fixation of legumes: a review[J]. Agronomy Sust Developm, 2011, 31(1):155-172.DOI: 10.1051/agro/2010008. |
[9] | FAN X R, NAZ M, FAN X R, et al. Plant nitrate transporters:from gene function to application[J]. J Exp Bot, 2017, 68(10):2463-2475.DOI: 10.1093/jxb/erx011. |
[10] | 张合琼, 张汉马, 梁永书, 等. 植物硝酸盐转运蛋白研究进展[J]. 植物生理学报, 2016, 52(2):141-149. |
ZHANG H Q, ZHANG H M, LIANG Y S, et al. Research progress of nitrate in plant transport mechanism[J]. Plant Physiol J, 2016, 52(2):141-149.DOI: 10.13592/j.cnki.ppj.2015.0621. | |
[11] | LIU K H, TSAY Y F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. EMBO J, 2003, 22(5):1005-1013.DOI: 10.1093/emboj/cdg118. |
[12] | SOHLENKAMP C, WOOD C C, ROEB G W, et al. Characterization of Arabidopsis AtAMT2,a high-affinity ammonium transporter of the plasma membrane[J]. Plant Physiol, 2002, 130(4):1788-1796.DOI: 10.1104/pp.008599. |
[13] | YUAN L X, LOQUÉ D, KOJIMA S, et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. Plant Cell, 2007, 19(8):2636-2652.DOI: 10.1105/tpc.107.052134. |
[14] | YAO X, NIE J, BAI R, et al. Amino acid transporters in plants: identification and function[J]. Plants, 2020, 9(8): 972. DOI:https://www.mdpi.com/2223-7747/9/8/972. |
[15] |
TEGEDER M, MASCLAUX-DAUBRESSE C. Source and sink mechanisms of nitrogen transport and use[J]. New Phytol, 2018, 217(1):35-53.DOI: 10.1111/nph.14876.
pmid: 29120059 |
[16] | GARNETT T, CONN V, KAISER B N. Root based approaches to improving nitrogen use efficiency in plants[J]. Plant Cell Environ, 2009, 32(9):1272-1283.DOI: 10.1111/j.1365-3040.2009.02011.x. |
[17] | MASCLAUX-DAUBRESSE C, DANIEL-VEDELE F, DECHORGNAT J, et al. Nitrogen uptake,assimilation and remobilization in plants:challenges for sustainable and productive agriculture[J]. Ann Bot, 2010, 105(7):1141-1157.DOI: 10.1093/aob/mcq028. |
[18] | 刘利, 李秀杰, 韩真, 等. 植物中氮素感知和信号的研究进展[J]. 植物生理学报, 2018, 54(10):1535-1545. |
LIU L, LI X J, HAN Z, et al. Advances in nitrogen nutrition sensing and signaling in plants[J]. Plant Physiol J, 2018, 54(10):1535-1545.DOI: 10.13592/j.cnki.ppj.2018.0008. | |
[19] | HAVÉ M, MARMAGNE A, CHARDON F, et al. Nitrogen remobilization during leaf senescence:lessons from Arabidopsis to crops[J]. J Exp Bot, 2017, 68(10):2513-2529.DOI: 10.1093/jxb/erw365. |
[20] | YANG G Z, WEI Q X, HUANG H, et al. Amino acid transporters in plant cells:a brief review[J]. Plants, 2020, 9(8):967.DOI: 10.3390/plants9080967. |
[21] | TEGEDER M, HAMMES U Z. The way out and in:phloem loading and unloading of amino acids[J]. Curr Opin Plant Biol, 2018, 43:16-21.DOI: 10.1016/j.pbi.2017.12.002. |
[22] |
ZHAO Y, CHAN Z L, GAO J H, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proc Natl Acad Sci USA, 2016, 113(7):1949-1954.DOI: 10.1073/pnas.1522840113.
pmid: 26831097 |
[23] | WOO H R, KIM H J, LIM P O, et al. Leaf senescence:systems and dynamics aspects[J]. Annu Rev Plant Biol, 2019, 70:347-376.DOI: 10.1146/annurev-arplant-050718-095859. |
[24] | 王厚领, 张易, 夏新莉, 等. 木本植物叶片衰老研究进展[J]. 中国科学:生命科学, 2020, 50(2):196-206. |
WANG H L, ZHANG Y, XIA X L, et al. Research advances in leaf senescence of woody plants[J]. Sci Sin (Vitae), 2020, 50(2):196-206.DOI: 10.1360/SSV-2019-0192. | |
[25] | ARCHETTI M, DÖRING T F, HAGEN S B, et al. Unravelling the evolution of autumn colours:an interdisciplinary approach[J]. Trends Ecol Evol, 2009, 24(3):166-173.DOI: 10.1016/j.tree.2008.10.006. |
[26] | BARRACLOUGH P B, HOWARTH J R, JONES J, et al. Nitrogen efficiency of wheat:genotypic and environmental variation and prospects for improvement[J]. Eur J Agron, 2010, 33(1):1-11.DOI: 10.1016/j.eja.2010.01.005. |
[27] |
LIANG C Z, WANG Y Q, ZHU Y N, et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proc Natl Acad Sci USA, 2014, 111(27):10013-10018.DOI: 10.1073/pnas.1321568111.
pmid: 24951508 |
[28] |
GUO Y F, GAN S S. Translational researches on leaf senescence for enhancing plant productivity and quality[J]. J Exp Bot, 2014, 65(14):3901-3913.DOI: 10.1093/jxb/eru248.
pmid: 24935620 |
[29] | 周丽丽, 郑焰英, 李树斌, 等. 不同红树植物叶片元素重吸收特征[J]. 西北林学院学报, 2022, 37(3):51-56,119. |
ZHOU L L, ZHENG Y Y, LI S B, et al. Leaf nutrient resorption characteristics among mangrove tree species[J]. J Northwest For Univ, 2022, 37(3):51-56,119.DOI: 10.3969/j.issn.1001-7461.2022.03.08. | |
[30] | CHÁVEZ-VERGARA B M, GONZÁLEZ-RODRÍGUEZ A, ETCHEVERS J D, et al. Foliar nutrient resorption constrains soil nutrient transformations under two native oak species in a temperate deciduous forest in Mexico[J]. Eur J Forest Res, 2015, 134(5):803-817.DOI: 10.1007/s10342-015-0891-1. |
[31] | 邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3):522-527. |
DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephala[J]. Chin J Appl Environ Biol, 2015, 21(3):522-527.DOI: 10.3724/sp.j.1145.2014.11032. | |
[32] | 邱岭军, 胡欢甜, 林宇, 等. 滨海沙地不同林龄尾巨桉内吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2017, 23(4):739-744. |
QIU L J, HU H T, LIN Y, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry of Eucalyptus urophylla × E.grandis of different ages in a sandy coastal plain area[J]. Chin J Appl Environ Biol, 2017, 23(4):739-744. | |
[33] | 刘宏伟, 刘文丹, 王微, 等. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 2015, 35(12):4071-4080. |
LIU H W, LIU W D, WANG W, et al. Leaf traits and nutrient resorption of major woody species in the Karst limestone area of Chongqing[J]. Acta Ecol Sin, 2015, 35(12):4071-4080.DOI: 10.5846/stxb201310262584. | |
[34] |
赵勇, 吴明作, 樊巍, 等. 太行山针、阔叶森林凋落物分解及养分归还比较[J]. 自然资源学报, 2009, 24(9):1616-1624.
doi: 10.11849/zrzyxb.2009.09.011 |
ZHAO Y, WU M Z, FAN W, et al. Comparison of nutrient return and litter decomposition between coniferous and broad-leaved forests in hilly region of Taihang Mountains[J]. J Nat Resour, 2009, 24(9):1616-1624.DOI: 10.11849/zrzyxb.2009.09.011. | |
[35] | YAN T, ZHU J J, SONG H H, et al. Resorption-related nitrogen changes in the leaves and roots of Larix kaempferi seedlings under nutrient-sufficient and nutrient-starvation conditions[J]. J Plant Ecol, 2019, 12(4):615-623.DOI: 10.1093/jpe/rty056. |
[36] | 王佳茜, 李国雷, 孙龙, 等. 木本植物氮素内循环研究综述[J]. 世界林业研究, 2014, 27(4):24-29. |
WANG J X, LI G L, SUN L, et al. Review on internal cycling of nitrogen in woody plants[J]. World For Res, 2014, 27(4):24-29.DOI: 10.13348/j.cnki.sjlyyj.2014.04.005. | |
[37] | YUAN Z Y, CHEN H Y H. Global-scale patterns of nutrient resorption associated with latitude,temperature and precipitation[J]. Glob Ecol Biogeogr, 2009, 18(1):11-18.DOI: 10.1111/j.1466-8238.2008.00425.x. |
[38] | MILLARD P, GRELET G A. Nitrogen storage and remobilization by trees:ecophysiological relevance in a changing world[J]. Tree Physiol, 2010, 30(9):1083-1095.DOI: 10.1093/treephys/tpq042. |
[39] |
MILLARD P, WENDLER R, GRASSI G, et al. Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization[J]. Tree Physiol, 2006, 26(4):527-536.DOI: 10.1093/treephys/26.4.527.
pmid: 16414931 |
[40] | MILLARD P, HESTER A, WENDLER R, et al. Interspecific defoliation responses of trees depend on sites of winter nitrogen storage[J]. Funct Ecol, 2001, 15(4):535-543.DOI: 10.1046/j.0269-8463.2001.00541.x. |
[41] |
田歌, 王芬, 徐新翔, 等. 富士苹果幼树生长与氮素积累和利用动态[J]. 应用生态学报, 2018, 29(10):3319-3325.
doi: 10.13287/j.1001-9332.201810.024 |
TIAN G, WANG F, XU X X, et al. Dynamics of growth and nitrogen accumulation and utilization of young apple trees[J]. Chin J Appl Ecol, 2018, 29(10):3319-3325.DOI: 10.13287/j.1001-9332.201810.024. | |
[42] | 张永发, 吴小平, 王文斌, 等. 不同氮水平下橡胶树氮素贮藏及翌年分配利用特性[J]. 热带作物学报, 2019, 40(12):2313-2320. |
ZHANG Y F, WU X P, WANG W B, et al. Effects of different N rates on storage and remobilization of urea-15N by rubber tree[J]. Chin J Trop Crops, 2019, 40(12):2313-2320.DOI: 10.3969/j.issn.1000-2561.2019.12.001. | |
[43] | WOO H R, KIM H J, NAM H G, et al. Plant leaf senescence and death-regulation by multiple layers of control and implications for aging in general[J]. Journal of Cell Science, 2013, 126(21): 4823-4833. DOI: 10.1242/jcs.109116. |
[44] | CAO J, ZHANG Y, TAN S Y, et al. LSD 4.0:an improved database for comparative studies of leaf senescence[J]. Mol Hortic, 2022, 2(1):1-4.DOI: 10.1186/s43897-022-00045-w. |
[45] |
SCHIPPERS J H M. Transcriptional networks in leaf senescence[J]. Curr Opin Plant Biol, 2015, 27:77-83.DOI: 10.1016/j.pbi.2015.06.018.
pmid: 26190740 |
[46] | KIM J, WOO H R, NAM H G. Toward systems understanding of leaf senescence:an integrated multi-omics perspective on leaf senescence research[J]. Mol Plant, 2016, 9(6):813-825.DOI: 10.1016/j.molp.2016.04.017. |
[47] | LIM P O, KIM H J, NAM H G. Leaf Senescence[J]. Annual Review of Plant Biology, 2007, 58(1): 115-136. DOI: 10.1146/annurev.arplant.57.032905.105316. |
[48] |
BHALERAO R, KESKITALO J, STERKY F, et al. Gene expression in autumn leaves[J]. Plant Physiology, 2003, 131(2): 430-442. DOI: 10.1104/pp.012732.
pmid: 12586868 |
[49] |
ANDERSSON A, KESKITALO J, SJöDIN A, et al. A transcriptional timetable of autumn senescence[J]. Genome Biology, 2004, 5(4): R24. DOI: 10.1186/gb-2004-5-4-r24.
pmid: 15059257 |
[50] | WEN C H, LIN S S, CHU F H. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan gum[J]. Plant Cell Physiol, 2015, 56(1): 163-174. DOI: 10.1093/pcp/pcu160. |
[51] | GUO P R, LI Z H, HUANG P X, et al. A tripartite amplification loop involving the transcription factor WRKY75,salicylic acid,and reactive oxygen species accelerates leaf senescence[J]. Plant Cell, 2017, 29(11):2854-2870.DOI: 10.1105/tpc.17.00438. |
[52] | LI Z H, ZHANG Y, ZOU D, et al. LSD 3.0:a comprehensive resource for the leaf senescence research community[J]. Nucleic Acids Res, 2020, 48(D1):1069-1075.DOI: 10.1093/nar/gkz898. |
[53] | WANG H L, ZHANG Y, WANG T, et al. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus[J]. Plant Cell, 2021, 33(5):1594-1614.DOI: 10.1093/plcell/koab046. |
[54] | GUO Y F, GAN S S. AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J]. Plant J, 2006, 46(4):601-612.DOI: 10.1111/j.1365-313X.2006.02723.x. |
[55] |
UAUY C, DISTELFELD A, FAHIMA T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314(5803): 1298-1301. DOI:10.1126/science1133649.
pmid: 17124321 |
[56] |
TANG W J, YE J, YAO X M, et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nat Commun, 2019, 10(1):5279.DOI: 10.1038/s41467-019-13187-1.
pmid: 31754193 |
[57] |
XIE Z N, YU G H, LEI S S, et al. STRONG STAYGREEN inhibits DNA binding of PvNAP transcription factors during leaf senescence in switchgrass[J]. Plant Physiol, 2022, 190(3):2045-2058.DOI: 10.1093/plphys/kiac397.
pmid: 36005925 |
[58] | SARWAT M, NAQVI A R, AHMAD P, et al. Phytohormones and microRNAs as sensors and regulators of leaf senescence:assigning macro roles to small molecules[J]. Biotechnol Adv, 2013, 31(8):1153-1171.DOI: 10.1016/j.biotechadv.2013.02.003. |
[1] | WANG Ziyue, ZHEN Yan, LIU Guangxin, XI Mengli. Assay for transposase-accessible chromatin with high-throughput sequencing and its application prospect in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 1-10. |
[2] | HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming. Application of CRISPR/Cas technique in woody plant improvement [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 24-30. |
[3] | MENG Dekai, XU Zhipeng, LIU Ningning, WANG Meng, WANG Chu, LIU Guifeng. Characterization of photosynthetic and growth traits of precocious leaf senescence mutant of BpGH3.5 transgenic lines in Betula platyphylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 37-43. |
[4] | XIE Yinfeng1, LIN Hou2, ZHANG Qianqian1, ZHANG Chunxia1. Physiological characteristics of leaf senescence in Shibataea chinensis after anthesis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(06): 39-. |
[5] | LI Dong, HUANG Li-li, HAN Su-fen*. 16S rDNA Sequence Analysis of 23 Rhizobium Strains Isolated from Leguminosae Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2007, 31(06): 117-120. |
[6] | PENG Fang-ren1, GUO Hong-yan1, YANG Yu-zhen1,2, GUO Yan-qing1. Progresses of Research on Ammonium Assimilation in Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(06): 117-122. |
[7] | GUO Hong-yan, GUO Yan-qing, PENG Fang-ren*. The Research Progresses on the Mechanism of Metabolization of Vegetative Storage Protein in Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(04): 123-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||