JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 187-195.doi: 10.12302/j.issn.1000-2006.202204069
Previous Articles Next Articles
XIANG Jun1,2(), YAN Enping2, JIANG Jiawei2,3, SONG Yabin4, WEI Wei1,*(), MO Dengkui2,*()
Received:
2022-04-29
Revised:
2022-06-19
Online:
2024-01-30
Published:
2024-01-24
Contact:
WEI Wei,MO Dengkui
E-mail:15084934667@163.com;22010230@qq.com;Dengkuimo@csuft.edu.cn
CLC Number:
XIANG Jun, YAN Enping, JIANG Jiawei, SONG Yabin, WEI Wei, MO Dengkui. Research on forest change detection based on fully convolutional network and low resolution label[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 187-195.
Table 1
Network model accuracy rating"
森林检测模型 forest detection model | 年份 year | 样本总面积/ km2 total sample area | 森林面积/ km2 forest area | STP/km2 | SFP/km2 | SFN/km2 | 精确率/% precision | 召回率/% recall | F1分数/% F1 score |
---|---|---|---|---|---|---|---|---|---|
FPN | 2020 | 400 | 347.07 | 338.25 | 21.77 | 8.82 | 93.95 | 97.46 | 95.67 |
2021 | 400 | 344.78 | 335.57 | 24.02 | 9.21 | 93.32 | 97.33 | 95.28 | |
LinkNet | 2020 | 400 | 347.07 | 336.87 | 22.65 | 10.20 | 93.70 | 97.06 | 95.35 |
2021 | 400 | 344.78 | 328.27 | 14.90 | 16.51 | 95.66 | 95.21 | 95.43 | |
U-Net | 2020 | 400 | 347.07 | 339.36 | 18.55 | 7.71 | 94.82 | 97.78 | 96.28 |
2021 | 400 | 344.78 | 314.65 | 11.36 | 30.13 | 96.52 | 91.26 | 93.81 | |
FCN | 2020 | 400 | 347.07 | 339.96 | 13.26 | 7.11 | 96.25 | 97.95 | 97.09 |
2021 | 400 | 344.78 | 343.57 | 27.73 | 1.21 | 92.53 | 99.65 | 95.96 |
Table 2
Accuracy evaluation of forest land change detection results"
森林变化 forest change | 真实变化面积/ hm2 true change area | 预测变化面积/ hm2 predicted change area | STP/ hm2 | SFP/ hm2 | SFN/ hm2 | 精确率/% precision | 召回率/% recall | F1分数/% F1 score |
---|---|---|---|---|---|---|---|---|
森林减少 forest reduction | 369.46 | 386.56 | 286.60 | 99.96 | 82.85 | 74.14 | 77.57 | 75.82 |
森林增加 forest increase | 84.04 | 92.12 | 64.26 | 27.86 | 19.78 | 69.76 | 76.46 | 72.96 |
合计变化 total change | 453.50 | 478.68 | 350.86 | 127.82 | 102.63 | 73.30 | 77.37 | 75.28 |
[1] | 魏安世, 杨志刚. 森林资源年度监测小班数据自动更新技术[J]. 南京林业大学学报(自然科学版), 2010, 34(4):123-128. |
WEI A S, YANG Z G. Automatic updating technique of subcompartment data for annual monitoring of forest resource[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):123-128.DOI: 10.3969/j.issn.1000-2006.2010.04.027. | |
[2] | 刘羿, 佘光辉, 刘安兴, 等. 森林资源系统自组织特征研究[J]. 南京林业大学学报(自然科学版), 2008, 32(5):51-55. |
LIU Y, SHE G H, LIU A X, et al. Research on self-organization characters in forest resource system[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(5):51-55.DOI: 10.3969/j.issn.1000-2006.2008.05.012. | |
[3] | 李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017, 29(3):77-84. |
LI C G, LIANG W H. Forest change detection using remote sensing image based on object-oriented change vector analysis[J]. Remote Sens Land Resour, 2017, 29(3):77-84.DOI: 10.6046/gtzyyg.2017.03.11. | |
[4] | 张丽云, 赵天忠, 夏朝宗, 等. 遥感变化检测技术在林业中的应用[J]. 世界林业研究, 2016, 29(2):44-48. |
ZHANG L Y, ZHAO T Z, XIA C Z, et al. Application of change detection technologies of remote sensing to forestry[J]. World For Res, 2016, 29(2):44-48.DOI: 10.13348/j.cnki.sjlyyj.2016.02.005. | |
[5] | 张祖宇, 滕永核, 秦元丽, 等. 基于U-Net模型的无人机影像数据地表覆被信息自动提取研究[J]. 广西林业科学, 2022, 51(4):516-519. |
ZHANG Z Y, TENG Y H, QIN Y L, et al. Automatic extraction of land cover information from UAV image data based on U-Net model[J]. Guangxi Forest Sci, 2022, 51(4):516-519.DOI: 10.19692/j.issn.1006-1126.20220411. | |
[6] | 王利民, 刘佳, 杨玲波, 等. 基于无人机影像的农情遥感监测应用[J]. 农业工程学报, 2013, 29(18):136-145. |
WANG L M, LIU J, YANG L B, et al. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring[J]. Trans Chin Soc Agric Eng, 2013, 29(18):136-145.DOI: 10.3969/j.issn.1002-6819.2013.18.017. | |
[7] | ZHAO S H, WANG Q, LI Y, et al. An overview of satellite remote sensing technology used in China’s environmental protection[J]. Earth Sci Inform, 2017, 10(2):137-148.DOI: 10.1007/s12145-017-0286-6. |
[8] | ROGAN J, CHEN D M. Remote sensing technology for mapping and monitoring land-cover and land-use change[J]. Prog Plan, 2004, 61(4):301-325.DOI: 10.1016/S0305-9006(03)00066-7. |
[9] | 郭颖, 李增元, 陈尔学, 等. 一种改进的高空间分辨率遥感影像森林类型深度学习精细分类方法:双支FCN-8s[J]. 林业科学, 2020, 56(3):48-60. |
GUO Y, LI Z Y, CHEN E X, et al. A deep learning method for forest fine classification based on high resolution remote sensing images:two-branch FCN-8s[J]. Sci Silvae Sin, 2020, 56(3):48-60.DOI: 10.11707/j.1001-7488.20200306. | |
[10] | 覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020, 24(5):511-520. |
QIN X L, LI X T, LIU S C, et al. Forest fire early warning and monitoring techniques using satellite remote sensing in China[J]. J Remote Sens, 2020, 24(5):511-520. | |
[11] | 杨雷, 禹定峰, 高皜, 等. Sentinel-2的胶州湾水体透明度遥感反演[J]. 红外与激光工程, 2021, 50(12):515-521. |
YANG L, YU D F, GAO H, et al. Remote sensing retrieval of secchi disk depth in Jiaozhou Bay using Sentinel-2 MSI image[J]. Infrared Laser Eng, 2021, 50(12):515-521. | |
[12] | 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12):1507-1522. |
CHEN R Z, WANG L, LI D R, et al. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geod Cartogr Sin, 2019, 48(12):1507-1522.DOI: 10.11947/j.AGCS.2019.20190446. | |
[13] | GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognit, 2018, 77:354-377.DOI: 10.1016/j.patcog.2017.10.013. |
[14] | SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.May 24,2016,IEEE, 2016:640-651.DOI: 10.1109/TPAMI.2016.2572683. |
[15] | 业巧林, 许平, 张冬. 基于深度学习特征和支持向量机的遥感图像分类[J]. 林业工程学报, 2019, 4(2):119-125. |
YE Q L, XU D P, ZHANG D. Remote sensing image classification based on deep learning features and support vector machine[J]. J Fore Eng, 2019, 4(2):119-125.DOI:10.13360/j.issn.2096-1359.2019.02.019. | |
[16] | FU G, LIU C J, ZHOU R, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sens, 2017, 9(5):498.DOI: 10.3390/rs9050498. |
[17] | LIU R C, JIANG D W, ZHANG L L, et al. Deep depthwise separable convolutional network for change detection in optical aerial images[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13:1109-1118.DOI: 10.1109/JSTARS.2020.2974276. |
[18] | LEI T, ZHANG Q, XUE D H, et al. End-to-end change detection using a symmetric fully convolutional network for landslide mapping[C]// ICASSP 2019—2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). May 12-17,2019,Brighton,UK.IEEE, 2019:3027-3031.DOI: 10.1109/ICASSP.2019.8682802. |
[19] | MILLETARI F, NAVAB N, AHMADI S A. V-net:fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 Fourth International Conference on 3D Vision (3DV). October 25-28,2016,Stanford,CA,USA.IEEE, 2016:565-571.DOI: 10.1109/3DV.2016.79. |
[20] | RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.DOI:10.1007/978-3-319-24574-4_28. |
[21] | CHEN H, SHI Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sens, 2020, 12(10):1662.DOI: 10.3390/rs12101662. |
[22] | 王昶, 张永生, 王旭, 等. 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报(工学版), 2020, 54(11):2138-2148. |
WANG C, ZHANG Y S, WANG X, et al. Remote sensing image change detection method based on deep neural networks[J]. J Zhejiang Univ (Eng Sci), 2020, 54(11):2138-2148.DOI: 10.3785/j.issn.1008-973X.2020.11.009. | |
[23] | WANG Z Y, LIU M L, LIU X N, et al. Spatio-temporal evolution of surface urban heat islands in the Chang-Zhu-Tan urban agglomeration[J]. Phys Chem Earth Parts A/B/C, 2020, 117:102865.DOI: 10.1016/j.pce.2020.102865. |
[24] | JIANG W G, DENG Y, TANG Z H, et al. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models[J]. Ecol Model, 2017, 345:30-40.DOI: 10.1016/j.ecolmodel.2016.12.002. |
[25] | 马润, 胡斯勒图, 尚华哲, 等. 基于葵花-8卫星大气产品的地表下行短波辐射计算[J]. 遥感学报, 2019, 23(5):924-934. |
MA R, HUSI L, SHANG H Z, et al. Estimation of downward surface shortwave radiation from Himawari-8 atmospheric products[J]. J Remote Sens, 2019, 23(5):924-934. | |
[26] | 伟乐斯, 尚华哲, 胡斯勒图, 等. GF-5 DPC数据的云检测方法研究[J]. 遥感学报, 2021, 25(10):2053-2066. |
WEI L S, SHANG H Z, HUSI L, et al. Cloud detection algorithm based on GF-5 DPC data[J]. J Remote Sens, 2021, 25(10):2053-2066. | |
[27] | PONTIUS R G, SHUSAS E, MCEACHERN M. Detecting important categorical land changes while accounting for persistence[J]. Agric Ecosyst Environ, 2004, 101(2/3):251-268.DOI: 10.1016/j.agee.2003.09.008. |
[28] | KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL]. arXiv:Learning, 2014.[2022-03-20]. https://arxiv.org/abs/1412.6980. |
[29] | HAND D, CHRISTEN P. A note on using the F-measure for evaluating record linkage algorithms[J]. Stat Comput, 2018, 28(3):539-547.DOI: 10.1007/s11222-017-9746-6. |
[30] | YIN H, PFLUGMACHER D, LI A, et al. Land use and land cover change in Inner Mongolia-understanding the effects of China’s re-vegetation programs[J]. Remote Sens Environ, 2018, 204:918-930.DOI: 10.1016/j.rse.2017.08.030. |
[31] | JIN S M, YANG L M, ZHU Z, et al. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011[J]. Remote Sens Environ, 2017, 195:44-55.DOI: 10.1016/j.rse.2017.04.021. |
[32] | LI J Y, HUANG X, CHANG X Y. A label-noise robust active learning sample collection method for multi-temporal urban land-cover classification and change analysis[J]. ISPRS J Photogramm Remote Sens, 2020, 163:1-17.DOI: 10.1016/j.isprsjprs.2020.02.022. |
[33] | HARALICK R M, STERNBERG S R, ZHUANG X H. Image analysis using mathematical morphology[J]. IEEE Trans Pattern Anal Mach Intell, 1987, PAMI-9(4):532-550.DOI: 10.1109/TPAMI.1987.4767941. |
[34] | 吴胜义, 张方圆, 王飞. 林地变更调查技术方法分析与研究[J]. 林业科技, 2021, 46(2):38-41,45. |
WU S Y, ZHANG F Y, WANG F. Analysis and research on technology and method of forest land change survey[J]. For Sci Technol, 2021, 46(2):38-41,45.DOI: 10.19750/j.cnki.1001-9499.2021.02.011. | |
[35] | 徐新良, 刘纪远, 庄大方, 等. 中国林地资源时空动态特征及驱动力分析[J]. 北京林业大学学报, 2004, 26(1):41-46. |
XU X L, LIU J Y, ZHUANG D F, et al. Spatial-temporal characteristics and driving forces of woodland resource changes in China[J]. J Beijing For Univ, 2004, 26(1):41-46.DOI: 10.3321/j.issn:1000-1522.2004.01.008. | |
[36] | 夏传福, 李静, 柳钦火. 植被物候遥感监测研究进展[J]. 遥感学报, 2013, 17(1):1-16. |
XIA C F, LI J, LIU Q H. Review of advances in vegetation phenology monitoring by remote sensing[J]. J Remote Sens, 2013, 17(1):1-16. | |
[37] | 范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3):304-319. |
FAN D Q, ZHAO X S, ZHU W Q, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Prog Geogr, 2016, 35(3):304-319. |
[1] | HE Nailei, ZHANG Jinsheng, LIN Wenshu. Forest fire image recognition based on deep learning multi-target detection technology [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 207-218. |
[2] | NIU Hongjian, LIU Wenping, CHEN Riqiang, ZONG Shixiang, LUO Youqing. Dehaze algorithm for woodland UAV images based on Resnet [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 175-18. |
[3] | YIN Xianming, JI Yu, ZHANG Riqing, MO Dengkui, PENG Shaofeng, WEI Wei. Research on recognition of Camellia oleifera leaf varieties based on deep learning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 29-36. |
[4] | XU Shanshan, LYU Jingyan, CHEN Fangyuan. Remote sensing vegetation detection method based on the deep convolutional neural network [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 185-193. |
[5] | LIU Jiazheng, WANG Xuefeng, WANG Tian. Automatic identification of tree species based on deep learning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 138-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||