JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 219-226.doi: 10.12302/j.issn.1000-2006.202206014
Previous Articles Next Articles
ZHAO Ya’nan(), SUN Tianhua, WANG Lifeng, XU Qiang, LIU Junxia, GAO Baojia, ZHOU Guona()
Received:
2022-06-24
Revised:
2023-02-14
Online:
2024-01-30
Published:
2024-01-24
Contact:
ZHOU Guona
E-mail:ya_nanzhao@126.com;zhouguona1976@163.com
CLC Number:
ZHAO Ya’nan, SUN Tianhua, WANG Lifeng, XU Qiang, LIU Junxia, GAO Baojia, ZHOU Guona. Plant hormones and metabolites response to feeding stimulation by pine caterpillar (Dendrolimus tabulaeformis) and leaf clipping control in Chinese pine (Pinus tabuliformis)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 219-226.
Table 1
Expression change ratio of different accumulated flavonoids in different groups"
物质名称 compound | 0 h和FS 2 h 0 h vs FS 2 h | 0 h和FS 8 h 0 h vs FS 8 h | FS 2 h和LCC 2 h FS 2 h vs LCC2 h | FS 8 h和LCC 8 h FS 8 h vs LCC8 h |
---|---|---|---|---|
异樱花素isosakuranetin | -2.20 | 0.00 | 1.46 | 0.00 |
山柰酚kaempferol | -1.54 | 0.00 | -1.28 | 0.00 |
短叶松素pinobanksin | 1.52 | 1.32 | -1.26 | 0.00 |
二氢杨梅素(蛇葡萄素)dihydromyricetin | 8.04 | 8.58 | -5.82 | -2.44 |
柚皮素naringenin | 0.00 | 0.00 | -1.50 | -15.23 |
香橙素(二氢山柰酚) dihydrokaempferol | 0.00 | 1.33 | -1.13 | -2.28 |
球松素pinostrobin | 0.00 | 0.00 | -6.03 | -6.89 |
柚皮素查尔酮naringenin chalcone | 1.61 | 1.45 | -1.37 | 0.00 |
根皮素phloretin | 2.51 | 1.98 | -1.76 | 0.00 |
圣草酚eriodictyol | 3.78 | 3.68 | -3.29 | -3.05 |
紫铆素butin | 1.52 | 1.95 | -1.67 | -2.38 |
二氢槲皮素(花旗松素)dihydroquercetin | 7.03 | 7.13 | -6.57 | -3.06 |
白杨素chrysin | 0.00 | 0.00 | 0.00 | -1.48 |
乔松素pinocembrin | -1.12 | 0.00 | 0.00 | -8.03 |
橙皮素hesperetin | 0.00 | 1.18 | 0.00 | -1.49 |
新橙皮苷neohesperidin | 0.00 | 0.00 | 0.00 | -1.08 |
黄颜木素fustin | -1.23 | 0.00 | 0.00 | 1.24 |
3-O-乙酰短叶松黄烷酮pinobanksin 3-O-acetate | 0.00 | 0.00 | 0.00 | -1.30 |
槲皮素quercetin | 0.00 | 0.00 | 0.00 | 0.00 |
Fig. 4
Concentration of JA (A), SA(B), IAA(C) and ABA(D) at different time after treatment Different uppercase letters mean significant differences among different treat modes in the same time after different treatments at P < 0.05. Different lowercase letters mean significant difference among different time after treatments under the same treat mode at P <0.05."
[1] | 窦宏双, 梁晓, 陈青, 等. 二斑叶螨为害前后抗、感木薯转录组分析及水杨酸、茉莉酸途径差异表达基因验证[J]. 热带作物学报, 2021, 42(11): 3146-3155. |
DOU H S, LIANG X, CHEN Q, et al. Transcriptome analysis of resistant and susceptible cassava infested by Tetranychus urticae and verification of differentially expressed genes in salicylic acid and jasmonic acid pathways[J]. Chin J Trop Crops, 2021, 42(11):3146-3155. DOI:10.3969/j.issn.1000-2561.2021.11.013. | |
[2] | 黄双杰, 曹梦珍, 陈凌芝, 等. 氮素胁迫条件下茶树根系发育及生长素的响应[J]. 江苏农业学报, 2023, 39(3):814-821. |
HUANG S J, CAO M Z, CHEN L Z, et al. Auxin response and tea plant roots formation regulated by nitrogen stress[J]. Jiangsu J Agri Sci, 2023, 39(3):814-821.DOI: 10.3969/j.issn.1000-4440.2023.03.023. | |
[3] | BHARATH P, GAHIR S, RAGHAVENDRA A S. Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress[J]. Front Plant Sci, 2021, 12:615114. DOI:10.3389/fpls.2021.615114. |
[4] | OU X B, LI T Q, ZHAO Y, et al. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells[J]. J Plant Physiol, 2022, 268:153585.DOI:10.1016/j.jplph.2021.153585. |
[5] | 赵利, 钞建宾, 郭捷, 等. 基于代谢组学技术的植物抗病相关代谢物研究进展[J]. 西北植物学报, 2021, 41(6):1071-1078. |
ZHAO L, CHAO J B, GUO J, et al. Study on plant resistance-related metabolites against pathogenic fungi based on metabolomics[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(6):1071-1078. DOI:10.7606/j.issn.1000-4025.2021.06.1071. | |
[6] | RIVAS-UBACH A, SARDANS J, HÓDAR J A, et al. Similar local,but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth[J]. Plant Biol, 2016, 18(3):484-494. DOI:10.1111/plb.12422. |
[7] | 张佳松. 甘蔗响应黏虫取食的代谢组学分析[D]. 福州: 福建农林大学, 2020. |
ZHANG J S. The metabolomics analysis of sugarcane in response of oriential armworm Mythimna separate feeding[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. | |
[8] | 张强, 周鹏, 刘昌来, 等. NaCl处理下全缘冬青和红果冬青根系的转录组活性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 99-108. |
ZHANG Q, ZHOU P, LIU C L, et al. Comparison of transcriptomic activity of Ilex integra and I. purpurea roots with NaCl treatments[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3): 99-108. DOI: 10.12302/j.issn.1000-2006.202109054. | |
[9] | 张斌, 高宝嘉, 刘洋. 剪叶和取食刺激对油松体内几种防御酶的活性及其动态的影响[J]. 生态科学, 2017, 36(1):118-122. |
ZHANG B, GAO B J, LIU Y. The effects of leaf-cutting and feeding stimulation on the activities and dynamic of defense enzymes in Chinese pine[J]. Ecol Sci, 2017, 36(1):118-122. DOI:10.14108/j.cnki.1008-8873.2017.01.016. | |
[10] | 石媛媛, 冯金周, 于连海, 等. 昆虫取食和剪叶刺激对油松针叶内部分防御物质的诱导效应[J]. 河北农业大学学报, 2017, 40(1):81-86. |
SHI Y Y, FENG J Z, YU L H, et al. The inducing effect of insect feeding and leaf cutting on some defensive substance in Chinese pine(Pinus tabulaeformis)needle[J]. J Agric Univ Hebei, 2017, 40(1):81-86. DOI:10.13320/j.cnki.jauh.2017.0015. | |
[11] | 王银翠, 周国娜, 张斌, 等. 油松毛虫取食和剪叶刺激胁迫下油松的蛋白质表达差异分析[J]. 林业科学, 2016, 52(8):68-75. |
WANG Y C, ZHOU G N, ZHANG B, et al. Difference in protein expression of Pinus tabulaeformis induced by Dendrolimus tabulaeformis feeding and leaf-cutting stimulation[J]. Sci Silvae Sin, 2016, 52(8):68-75. DOI: 10.11707/j.1001-7488.20160809. | |
[12] | 秦世杰, 祁金玉, 刘仁军, 等. 自然状态下油松感染松材线虫后的生理响应[J]. 沈阳农业大学学报, 2021, 52(5):625-632. |
QIN S J, QI J Y, LIU R J, et al. Physiological response of Pinus tabulaeformis infected with Bursaphelenchus xylophilus in natural state[J]. J Shenyang Agric Univ, 2021, 52(5):625-632. DOI: 10.3969/j.issn.1000-1700.2021.05.014. | |
[13] | NIU S H, LI J, BO W H, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1):204-217e14. DOI:10.1016/j.cell.2021.12.006. |
[14] | MA T L, LI W J, HONG Y S, et al. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress[J]. J Proteom, 2022, 253:104457. DOI:10.1016/j.jprot.2021.104457. |
[15] | AHAMMED G J, YANG Y X. Anthocyanin-mediated arsenic tolerance in plants[J]. Environ Pollut, 2022, 292:118475. DOI:10.1016/j.envpol.2021.118475. |
[16] | LIU S H, FANG S, LIU C L, et al. Transcriptomics integrated with metabolomics reveal the effects of ultraviolet-B radiation on flavonoid biosynthesis in Antarctic moss[J]. Front Plant Sci, 2021, 12:788377. DOI:10.3389/fpls.2021.788377. |
[17] | 徐展宏, 朱莹, 金慧颖, 等. 不同叶色青钱柳叶片色素、多酚含量及光合特性的差异[J]. 南京林业大学学报(自然科学版), 2022, 46(2):103-110. |
XU Z H, ZHU Y, JIN H Y, et al. Variations in the contents of leaf pigments and polyphenols and photosynthesis traits in Cyclocarya paliurus with different leaf colors[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2):103-110. DOI:10.12302/j.issn.1000-2006.202105048. | |
[18] | SHI J W, YAN X, SUN T T, et al. Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco[J]. Gene, 2022, 809:146017. DOI:10.1016/j.gene.2021.146017. |
[19] | LIU W X, FENG Y, YU S H, et al. The flavonoid biosynthesis network in plants[J]. Int J Mol Sci, 2021, 22(23):12824. DOI:10.3390/ijms222312824. |
[20] | CHEN Z, GUO Z P, NIU J P, et al. Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis[J]. Chemosphere, 2022, 290:133368. DOI:10.1016/j.chemosphere.2021.133368. |
[21] | 王伟伟. 茶树对茶尺蠖的抗性评价及其抗性机制研究[D]. 武汉: 华中农业大学, 2018. |
WANG W W. Resistance evaluation and mechanism of Camellia sinensis response to Ectropis obliqua[D]. Wuhan: Huazhong Agricultural University, 2018. | |
[22] | SOHN S I, PANDIAN S, RAKKAMMAL K, et al. Jasmonates in plant growth and development and elicitation of secondary metabolites: an updated overview[J]. Front Plant Sci, 2022, 13:942789. DOI:10.3389/fpls.2022.942789. |
[23] | WASTERNACK C, STRNAD M. Jasmonates are signals in the biosynthesis of secondary metabolites—pathways, transcription factors and applied aspects—a brief review[J]. New Biotechnol, 2019, 48:1-11. DOI:10.1016/j.nbt.2017.09.007. |
[24] | 李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制[J]. 植物保护学报, 2021, 48(3):563-569. |
LI Y H, XIAO N W, LIU Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense[J]. J Plant Prot, 2021, 48(3):563-569. DOI:10.13802/j.cnki.zwbhxb.2021.2020221. | |
[25] | 邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7):25-34. |
DENG M M, GUO X L. Research progress on plants responses to parasitic nematodes infection[J]. Biotechnol Bull, 2021, 37(7):25-34. DOI:10.13560/j.cnki.biotech.bull.1985.2021-0669. | |
[26] | 叶德友, 漆永红, 李敏权. 植物与线虫互作的信号传导及调控机制研究进展[J]. 草业学报, 2016, 25(10):191-201. |
YE D Y, QI Y H, LI M Q. Research progress on signal transduction and regulation mechanisms in plant-nematode interactions[J]. Acta Prataculturae Sin, 2016, 25(10):191-201. DOI:10.11686/cyxb2015574. | |
[27] | 张瑾, 邢玉娴, 韩涛, 等. 茶树诱导抗虫性的研究进展[J]. 昆虫学报, 2022, 65(3):399-408. |
ZHANG J, XING Y X, HAN T, et al. Research progress of induced defense against insect pests in tea plant (Camellia sinensis)[J]. Acta Entomol Sin, 2022, 65(3):399-408. DOI:10.16380/j.kcxb.2022.03.014. | |
[28] | LI R X, SU X Q, ZHOU R, et al. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses[J]. BMC Plant Biol, 2022, 22(1):36. DOI:10.1186/s12870-021-03410-x. |
[29] | HU W, ZHANG J P, YAN K, et al. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.)[J]. Physiol Plant, 2021, 173(4):2041-2054. DOI:10.1111/ppl.13550. |
[30] | 丁旭, 黄茜, 邓沁宇, 等. 脱落酸在植物抗虫性中的作用研究进展[J]. 环境昆虫学报, 2019, 41(4):808-813. |
DING X, HUANG X, DENG Q Y, et al. Research progress of abscisic acid in plant resistance to pest[J]. J Environ Entomol, 2019, 41(4):808-813. DOI:10.3969/j.issn.1674-0858. | |
[31] | 张吉玲, 李明阳, 李勇, 等. 机械损伤处理杉木无性系萌蘖及内源激素含量差异[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 153-158. |
ZHANG J L, LI M Y, LI Y, et al. Effects of mechanical damage treatment on the tillering ability and endogenous hormone content of Chinese fir clones[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2): 153-158. DOI: 10.12302/j.issn.1000-2006.202006054. | |
[32] | SMYTHERS A L, BHATNAGAR N, HA C, et al. Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric Gβ proteins[J]. New Phytol, 2022, 236(2):447-463.DOI: 10.1111/nph.18348. |
[33] | 岳喜良, 秦健, 洑香香, 等. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 35-42. |
YUE X L, QIN J, FU X X, et al. Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal.) Iljinskaja leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2): 35-42. DOI: 10.3969/j.issn.1000-2006.201904048. |
[1] | YE Keke, LI Qingmei, ZHU Yan, YAN Jingjing, ZHANG Zihan, FENG Sai, YANG Xiaohui. Responses of growth and afforestation performance of Pinus tabuliformis container and bareroot seedlings to fall fertilization [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 136-144. |
[2] | ZHANG Cheng, WANG Xiaoyan, WANG Xianrong, DUAN Yifan, ZHANG Min, SHI Dawei, ZHU Yue, SONG Yanfeng, CHAI Zihan, LI Lan. Photosynthesis and hormone study of male and hermaphroditic Osmanthus fragrans at different flowering stages [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 75-80. |
[3] | HU Yuling, YAO Xiaohua, REN Huadong, WANG Kailiang, LONG Wei. Study on somatic embryogenesis regeneration system in Camellia oleifera [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(06): 160-164. |
[4] | Author Han SufengZhang FuhaiDeng Zhenyu. Studies on Inducing Poplar to Nodulate and Fix Nitrogen [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 1999, 23(03): 42-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||